Katia Sparnacci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187790/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of Mechanochemical Control in "Grafting to―Reactions of Hydroxy-Terminated Statistical Copolymers. Macromolecules, 2021, 54, 499-508.	4.8	11
2	Silicon Doping by Polymer Grafting: Size Distribution Matters. ACS Applied Polymer Materials, 2021, 3, 6383-6393.	4.4	8
3	Magnetic molecularly imprinted multishell particles for zearalenone recognition. Polymer, 2020, 188, 122102.	3.8	7
4	HPLC method for the determination of monomer conversion and composition during the poly(styrene- <i>r</i> -methylmethacrylate) polymerization. International Journal of Polymer Analysis and Characterization, 2020, 25, 188-197.	1.9	0
5	Determining nonuniformities of coreâ€shell nanoparticle coatings by analysis of the inelastic background of Xâ€ray photoelectron spectroscopy survey spectra. Surface and Interface Analysis, 2020, 52, 770-777.	1.8	9
6	Doping of silicon by phosphorus end-terminated polymers: drive-in and activation of dopants. Journal of Materials Chemistry C, 2020, 8, 10229-10237.	5.5	17
7	Polymer Nanoparticle Identification and Concentration Measurement Using Fiber-Enhanced Raman Spectroscopy. Chemosensors, 2020, 8, 21.	3.6	4
8	Effect of Trapped Solvent on the Interface between PS- <i>b</i> -PMMA Thin Films and P(S- <i>r</i> -MMA) Brush Layers. ACS Applied Materials & Interfaces, 2020, 12, 7777-7787.	8.0	21
9	Surface-Energy Control and Characterization of Nanoparticle Coatings. Journal of Physical Chemistry C, 2020, 124, 11200-11211.	3.1	10
10	Core–shell silica–rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing. RSC Advances, 2020, 10, 14958-14964.	3.6	5
11	Directed Self-Assembly of Polystyrene Nanospheres by Direct Laser-Writing Lithography. Nanomaterials, 2020, 10, 280.	4.1	8
12	Thermal Degradation in Ultrathin Films Outperforms Dose Control of n-Type Polymeric Dopants for Silicon. ACS Applied Electronic Materials, 2019, 1, 1807-1816.	4.3	15
13	Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment. Scientific Reports, 2019, 9, 15782.	3.3	7
14	Effect of the Density of Reactive Sites in P(Sâ€ <i>r</i> â€MMA) Film during Al ₂ O ₃ Growth by Sequential Infiltration Synthesis. Advanced Materials Interfaces, 2019, 6, 1900503.	3.7	19
15	Determining the Thickness and Completeness of the Shell of Polymer Core–Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Secondary Ion Mass Spectrometry, and Transmission Scanning Electron Microscopy. Journal of Physical Chemistry C, 2019, 123, 29765-29775.	3.1	21
16	Development of an enrichment method for endogenous phosphopeptide characterization in human serum. Analytical and Bioanalytical Chemistry, 2018, 410, 1177-1185.	3.7	22
17	Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Analytical Methods, 2018, 10, 1725-1732.	2.7	44
18	New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples. Talanta, 2018, 178, 274-281.	5.5	42

#	Article	IF	CITATIONS
19	Control of Doping Level in Semiconductors <i>via</i> Self-Limited Grafting of Phosphorus End-Terminated Polymers. ACS Nano, 2018, 12, 178-186.	14.6	35
20	Multishell hybrid magnetic nanoparticles for phosphopeptide enrichment. AIP Conference Proceedings, 2018, , .	0.4	0
21	Analysis of phosphorus-end capped functionalpolymers, from bulk to ultrathin films. AIP Conference Proceedings, 2018, , .	0.4	Ο
22	Measuring the relative concentration of particle populations using differential centrifugal sedimentation. Analytical Methods, 2018, 10, 2647-2657.	2.7	18
23	Hierarchical Order in Dewetted Block Copolymer Thin Films on Chemically Patterned Surfaces. ACS Nano, 2018, 12, 7076-7085.	14.6	22
24	Influence of the long-range ordering of gold-coated Si nanowires on SERS. Scientific Reports, 2018, 8, 11305.	3.3	33
25	Deterministic doping via self-limited grafting of phosphorus end-terminated polymers. AIP Conference Proceedings, 2018, , .	0.4	0
26	Boron-terminated polystyrene as potential spin-on dopant for microelectronic applications. AIP Conference Proceedings, 2018, , .	0.4	0
27	From grafting to to grafting from. AIP Conference Proceedings, 2018, , .	0.4	1
28	Shell thickness determination for PTFEâ€PS coreâ€shell nanoparticles using scanning transmission Xâ€ray microscopy (STXM). Surface and Interface Analysis, 2018, 50, 1077-1082.	1.8	8
29	Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S- <i>r</i> -MMA)/PS- <i>b</i> -PMMA Systems with Different Thicknesses. ACS Applied Materials & Interfaces, 2017, 9, 31215-31223.	8.0	15
30	Toward Lateral Length Standards at the Nanoscale Based on Diblock Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 15685-15697.	8.0	14
31	TGA-GC–MS quantitative analysis of phosphorus-end capped functional polymers in bulk and ultrathin films. Journal of Analytical and Applied Pyrolysis, 2017, 128, 238-245.	5.5	16
32	High temperature surface neutralization process with random copolymers for block copolymer selfâ€assembly. Polymer International, 2017, 66, 459-467.	3.1	21
33	Molar mass and composition effects on the thermal stability of functional P(S- <i>r</i> -MMA) random copolymers for nanolithographic applications. Molecular Systems Design and Engineering, 2017, 2, 581-588.	3.4	4
34	Micrometer-Scale Ordering of Silicon-Containing Block Copolymer Thin Films via High-Temperature Thermal Treatments. ACS Applied Materials & Interfaces, 2016, 8, 9897-9908.	8.0	19
35	Fabrication of flexible silicon nanowires by self-assembled metal assisted chemical etching for surface enhanced Raman spectroscopy. RSC Advances, 2016, 6, 93649-93659.	3.6	34
36	A Multiâ€optical Collector of Sunlight Employing Luminescent Materials and Photonic Nanostructures. Advanced Optical Materials, 2016, 4, 147-155.	7.3	14

#	Article	IF	CITATIONS
37	Surface engineering with functional random copolymers for nanolithographic applications. AIP Conference Proceedings, 2016, , .	0.4	1
38	Neutral wetting brush layers for block copolymer thin films using homopolymer blends. AIP Conference Proceedings, 2016, , .	0.4	0
39	Fully bio-renewable multiblocks copolymers of poly(lactide) and commercial fatty acid-based polyesters polyols: Synthesis and characterization. European Polymer Journal, 2016, 81, 247-256.	5.4	9
40	Composition of ultrathin binary polymer brushes by thermogravimetry–gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 3155-3163.	3.7	6
41	Enhanced Lateral Ordering in Cylinder Forming PS- <i>b</i> -PMMA Block Copolymers Exploiting the Entrapped Solvent. ACS Applied Materials & Interfaces, 2016, 8, 8280-8288.	8.0	22
42	Photocatalytic Lithography: An Innovative Approach to Obtain Patterned pH-responsive Polymer Brushes. Materials Today: Proceedings, 2015, 2, 4183-4189.	1.8	9
43	Polycarbonateâ€based composites reinforced by in situ polytetrafluoroethylene fibrillation: Preparation, thermal and rheological behavior. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
44	Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures. Nanotechnology, 2015, 26, 415603.	2.6	15
45	Thermal Stability of Functional P(S-r-MMA) Random Copolymers for Nanolithographic Applications. ACS Applied Materials & Interfaces, 2015, 7, 3920-3930.	8.0	28
46	Self-cleaning properties in engineered sensors for dopamine electroanalytical detection. Analyst, The, 2015, 140, 1486-1494.	3.5	36
47	Ultrathin Random Copolymer-Grafted Layers for Block Copolymer Self-Assembly. ACS Applied Materials & Interfaces, 2015, 7, 10944-10951.	8.0	71
48	Patterning of polymer brushes made easy using titanium dioxide: direct and remote photocatalytic lithography. Chemical Communications, 2015, 51, 7313-7316.	4.1	34
49	Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. Journal of Inorganic Biochemistry, 2015, 151, 132-142.	3.5	22
50	Scaling of correlation length in lamellae forming PS-b-PMMA thin films upon high temperature rapid thermal treatments. Journal of Materials Chemistry C, 2015, 3, 8618-8624.	5.5	29
51	Spherical Colloid Engineering. , 2015, , 103-125.		Ο
52	Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing. Nanotechnology, 2014, 25, 275601.	2.6	26
53	Thermally induced self-assembly of cylindrical nanodomains in low molecular weight PS- <i>b</i> -PMMA thin films. Nanotechnology, 2014, 25, 045301.	2.6	31
54	Evidence of Cybotactic Order in the Nematic Phase of a Main-Chain Liquid Crystal Polymer with Bent-Core Repeat Unit. ACS Macro Letters, 2014, 3, 91-95.	4.8	29

#	Article	IF	CITATIONS
55	Characterization of ultra-thin polymeric films by Gas chromatography-Mass spectrometry hyphenated to thermogravimetry. Journal of Chromatography A, 2014, 1368, 204-210.	3.7	31
56	Ordering dynamics in symmetric PS-b-PMMA diblock copolymer thin films during rapid thermal processing. Journal of Materials Chemistry C, 2014, 2, 6655-6664.	5.5	54
57	Flash grafting of functional random copolymers for surface neutralization. Journal of Materials Chemistry C, 2014, 2, 4909-4917.	5.5	43
58	Bessel-like photonic nanojets from core-shell sub-wavelength spheres. Optics Letters, 2014, 39, 3989.	3.3	39
59	Fine Tuning of Lithographic Masks through Thin Films of PS- <i>b</i> -PMMA with Different Molar Mass by Rapid Thermal Processing. ACS Applied Materials & Interfaces, 2014, 6, 7180-7188.	8.0	64
60	Biocompatible Anionic Polymeric Microspheres as Priming Delivery System for Effetive HIV/AIDS Tat-Based Vaccines. PLoS ONE, 2014, 9, e111360.	2.5	4
61	The surface nanostructurations by means of near field enhancement with nanospheres. Proceedings of SPIE, 2013, , .	0.8	1
62	Depth Profiling and Melting of Nanoparticles in Secondary Ion Mass Spectrometry (SIMS). Journal of Physical Chemistry C, 2013, 117, 16042-16052.	3.1	26
63	Thermal and mechanical properties of PES/PTFE composites and nanocomposites. Journal of Applied Polymer Science, 2013, 130, 3624-3633.	2.6	31
64	On the Thermal Stability of PS- <i>b</i> -PMMA Block and P(S- <i>r</i> -MMA) Random Copolymers for Nanopatterning Applications. Macromolecules, 2013, 46, 8224-8234.	4.8	43
65	Physical ageing reduction in PES through the incorporation of rigid non-interacting PTFE nanoparticles. Thermochimica Acta, 2013, 571, 53-59.	2.7	5
66	The "Mushroom Cloud―Demonstration Revisited. Journal of Chemical Education, 2013, 90, 765-767.	2.3	2
67	Rapid thermal processing of self-assembling block copolymer thin films. Nanotechnology, 2013, 24, 315601.	2.6	72
68	Biodistribution and Molecular Studies on Orally Administered Nanoparticle-AON Complexes Encapsulated with Alginate Aiming at Inducing Dystrophin Rescue in <i>mdx</i> Mice. BioMed Research International, 2013, 2013, 1-13.	1.9	21
69	Photoactive spherical colloids for opal photonic crystals. Polymer Composites, 2013, 34, 1443-1450.	4.6	7
70	Preparation and properties of PTFE/PAI nanocomposites. Polymer Composites, 2013, 34, 1451-1459.	4.6	9
71	Persistent Dystrophin Protein Restoration 90 Days after a Course of Intraperitoneally Administered Naked 2′OMePS AON and ZM2 NP-AON Complexes in mdx Mice. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-8.	3.0	19
72	Preparation, Properties, and Self-Assembly Behavior of PTFE-Based Core-Shell Nanospheres. Journal of Nanomaterials, 2012, 2012, 1-15.	2.7	12

#	Article	IF	CITATIONS
73	Preparation and Thermal Characterization of PTFE/PES Nanocomposites. Macromolecular Symposia, 2012, 311, 70-76.	0.7	9
74	Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation. Nanotechnology, 2012, 23, 485305.	2.6	33
75	Glowing Teacup Demonstration: Trautz–Schorigin Reaction of Natural Polyphenols. Journal of Chemical Education, 2012, 89, 1297-1300.	2.3	9
76	Preparation, properties and self-assembly behavior of PTFE based core-shell nanospheres. AIP Conference Proceedings, 2012, , .	0.4	3
77	Sulfonates-PMMA nanoparticles conjugates: A versatile system for multimodal application. Bioorganic and Medicinal Chemistry, 2012, 20, 6640-6647.	3.0	14
78	T.P.22 Nanoparticles as delivery systems for antisense oligoribonucleotides: Biodistribution studies and definition of the release kinetic in treated mdx mice. Neuromuscular Disorders, 2012, 22, 859.	0.6	1
79	Preparation and Properties of PTFE-PMMA Core-Shell Nanoparticles and Nanocomposites. Journal of Nanotechnology, 2012, 2012, 1-10.	3.4	4
80	Mesoporous silica membranes by self-assembled nanospheres and mediated laser ablation. , 2012, , .		0
81	Twoâ€dimensional nonâ€closeâ€packed arrays of nanoparticles via coreâ€shell nanospheres and reactive ion etching. Polymers for Advanced Technologies, 2012, 23, 558-564.	3.2	11
82	PTFE–PMMA core–shell colloidal particles as building blocks for selfâ€assembled opals: synthesis, properties and optical response. Polymer International, 2012, 61, 1294-1301.	3.1	32
83	O.14 Biocompatible nanoparticles as slow-release delivery system of 2′OMePS AON administered both intraperitoneally and orally in the mdx mice: dystrophin rescue and nanoparticles biodistribution. Neuromuscular Disorders, 2011, 21, 704.	0.6	0
84	Macro and quasiâ€mesoporous silicon by selfâ€assembling and metal assisted etching. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1403-1406.	1.8	8
85	Electrostatic Interaction of Negatively Charged Core–Shell Nanoparticles with Antitumoral Cationic Platinumâ€Based Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 3289-3294.	2.0	5
86	On the multiple crystallization behavior of PTFE in PMMA/PTFE nanocomposites from core–shell nanoparticles. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 548-554.	2.1	15
87	Dystrophin restoration in skeletal, heart and skin arrector pili smooth muscle of mdx mice by ZM2 NP–AON complexes. Gene Therapy, 2010, 17, 432-438.	4.5	49
88	Thermal and DMA Characterization of PTFEâ€PMMA Nanocomposites from Coreâ€5hell Nanoparticles. Macromolecular Symposia, 2010, 296, 197-202.	0.7	7
89	PMMAâ€based coreâ€shell nanoparticles with various PTFE cores. Journal of Polymer Science Part A, 2009, 47, 2928-2937.	2.3	24
90	Poly(methylmetacrylate) (PMMA) core–shell nanospheres act as efficient pharmacophores for the antiproliferative [PtCl3(NH3)]â~ complex by forming ionic couples. Inorganica Chimica Acta, 2009, 362, 4099-4109.	2.4	10

#	Article	IF	CITATIONS
91	PTFE-Based Coreâ^'Soft Shell Nanospheres and Soft Matrix Nanocomposites. Macromolecules, 2009, 42, 3518-3524.	4.8	37
92	Cationic PMMA Nanoparticles Bind and Deliver Antisense Oligoribonucleotides Allowing Restoration of Dystrophin Expression in the mdx Mouse. Molecular Therapy, 2009, 17, 820-827.	8.2	70
93	Induction of humoral and enhanced cellular immune responses by novel core–shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine, 2009, 27, 3605-3615.	3.8	39
94	Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine, 2009, 27, 4498-4507.	3.8	10
95	Assessment of the In Vivo Antiproliferative Activity of a Novel Platinum Particulate Pharmacophore. , 2009, , 19-25.		0
96	T.P.2.07 The systemic administration of a low dose of 2OMePS-AON combined with novel cationic polymethylmethacrylate nanoparticles induces the rescue of dystrophin expression in the mdx murine model. Neuromuscular Disorders, 2008, 18, 758.	0.6	0
97	Functional Polymeric Nano/Microparticles for Surface Adsorption and Delivery of Protein and DNA Vaccines. Current Drug Delivery, 2008, 5, 230-242.	1.6	44
98	Preparation and Characterization of Innovative Protein-coated Poly(Methylmethacrylate) Core-shell Nanoparticles for Vaccine Purposes. Pharmaceutical Research, 2007, 24, 1870-1882.	3.5	34
99	DNA prime and protein boost immunization with innovative polymeric cationic core-shell nanoparticles elicits broad immune responses and strongly enhance cellular responses of HIV-1 tat DNA vaccination. Vaccine, 2006, 24, 5655-5669.	3.8	46
100	Enhanced antisense effect of modified PNAs delivered through functional PMMA microspheres. International Journal of Pharmaceutics, 2006, 324, 83-91.	5.2	7
101	An ESR Approach to the Estimation of the Rate Constants of the Addition and Fragmentation Processes Involved in the RAFT Polymerization of Styrene. Helvetica Chimica Acta, 2006, 89, 2103-2118.	1.6	11
102	Comparison of novel delivery systems for antisense peptide nucleic acids. Journal of Controlled Release, 2005, 109, 24-36.	9.9	33
103	Core–shell microspheres by dispersion polymerization as promising delivery systems for proteins. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1557-1574.	3.5	23
104	A Multidisciplinary Approach to the Use of Pyridinyl Dithioesters and Their N-Oxides as CTAs in the RAFT Polymerization of Styrene. Not the Chronicle of a Failure Foretold. Macromolecules, 2005, 38, 7610-7618.	4.8	26
105	Controlled Free-Radical Polymerization: New Breath in a Mature Technology. Polymer News, 2005, 30, 110-119.	0.1	1
106	Antisense peptide nucleic acid delivered by core-shell microspheres. Journal of Controlled Release, 2005, 101, 397-8.	9.9	2
107	Novel biocompatible anionic polymeric microspheres for the delivery of the HIV-1 Tat protein for vaccine application. Vaccine, 2004, 22, 2910-2924.	3.8	39
108	A New Facile Synthesis of Tertiary Dithioesters ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
109	Direct ESR Detection of Free Radicals in the RAFT Polymerization of Styrene. Macromolecules, 2003, 36, 736-740.	4.8	39
110	Immunization with low doses of HIV-1 tat DNA delivered by novel cationic block copolymers induces CTL responses against Tat. Vaccine, 2003, 21, 1103-1111.	3.8	27
111	PTFEâ^Polystyrene Coreâ^Shell Nanospheres and Nanocomposites. Macromolecules, 2003, 36, 4360-4367.	4.8	50
112	Core–shell nanospheres for oligonucleotide delivery. V: Adsorption/release behavior of 'stealth' nanospheres. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 1209-1227.	3.5	1
113	A New Facile Synthesis of Tertiary Dithioesters. Journal of Organic Chemistry, 2002, 67, 7911-7914.	3.2	34
114	Micellar-type complexes of tailor-made synthetic block copolymers containing the HIV-1 tat DNA for vaccine application. Vaccine, 2002, 20, 2303-2317.	3.8	28
115	Core–shell microspheres by dispersion polymerization as drug delivery systems. Macromolecular Chemistry and Physics, 2002, 203, 1364-1369.	2.2	33
116	Uniformly sized molecularly imprinted polymers (MIPs) for 17β-estradiol. Macromolecular Chemistry and Physics, 2002, 203, 1532-1538.	2.2	29
117	Controlled Radical Polymerization of Styrene with Phosphoryl- and (Thiophosphoryl)dithioformates as RAFT Agents. Macromolecules, 2001, 34, 7269-7275.	4.8	59
118	Tailor-made core-shell nanospheres for antisense oligonucleotide delivery: IV.Adsorption/release behaviour. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 1339-1357.	3.5	4
119	Complex associates of plasmid DNA and a novel class of block copolymers with PEG and cationic segments as new vectors for gene delivery. Journal of Biomaterials Science, Polymer Edition, 2001, 12, 209-228.	3.5	19
120	Core-shell functional nanospheres for oligonucleotide delivery. II. Journal of Polymer Science Part A, 2000, 38, 1110-1117.	2.3	14
121	Core-shell functional nanospheres for oligonucleotide delivery. III. Stealth nanospheres. Journal of Polymer Science Part A, 2000, 38, 3347-3355.	2.3	11
122	Diblock and triblock functional copolymers by controlled radical polymerization. Journal of Polymer Science Part A, 1999, 37, 1237-1244.	2.3	24
123	Hybrid nanocomposites based on polystyrene and a reactive organophilic clay. Journal of Materials Science, 1998, 33, 2883-2888.	3.7	57