
Scott L Pomeroy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187649/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15545-15550.	3.3	38,922
2	Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 2002, 415, 436-442.	13.7	2,154
3	Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 2012, 123, 465-472.	3.9	1,536
4	Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 2012, 123, 473-484.	3.9	863
5	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
6	Dissecting the genomic complexity underlying medulloblastoma. Nature, 2012, 488, 100-105.	13.7	765
7	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	13.7	761
8	Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 2012, 488, 106-110.	13.7	675
9	Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 2013, 45, 927-932.	9.4	674
10	Genome Sequencing of SHH Medulloblastoma Predicts Genotype-Related Response to Smoothened Inhibition. Cancer Cell, 2014, 25, 393-405.	7.7	627
11	Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome. Journal of Clinical Oncology, 2011, 29, 1424-1430.	0.8	609
12	Medulloblastomics: the end of the beginning. Nature Reviews Cancer, 2012, 12, 818-834.	12.8	560
13	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	3.9	478
14	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	0.8	381
15	Medulloblastoma. Nature Reviews Disease Primers, 2019, 5, 11.	18.1	376
16	Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathologica, 2012, 123, 615-626.	3.9	318
17	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	5.1	307
18	Resolving medulloblastoma cellular architecture by single-cell genomics. Nature, 2019, 572, 74-79.	13.7	273

SCOTT L POMEROY

#	Article	IF	CITATIONS
19	SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nature Genetics, 2017, 49, 289-295.	9.4	268
20	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	0.8	263
21	Conserved mechanisms across development and tumorigenesis revealed by a mouse development perspective of human cancers. Genes and Development, 2004, 18, 629-640.	2.7	154
22	Proteomics, Post-translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2018, 34, 396-410.e8.	7.7	146
23	Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathologica, 2012, 123, 539-552.	3.9	145
24	Focus on central nervous system neoplasia. Cancer Cell, 2002, 1, 125-128.	7.7	130
25	The G protein α subunit Cαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	15.2	110
26	Single-Cell Transcriptomics in Medulloblastoma Reveals Tumor-Initiating Progenitors and Oncogenic Cascades during Tumorigenesis and Relapse. Cancer Cell, 2019, 36, 302-318.e7.	7.7	96
27	Children's Oncology Group Phase III Trial of Reduced-Dose and Reduced-Volume Radiotherapy With Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 2685-2697.	0.8	91
28	Medulloblastoma tumorigenesis diverges from cerebellar granule cell differentiation in patched heterozygous mice. Developmental Biology, 2003, 263, 50-66.	0.9	89
29	Combining Gene Expression Profiles and Clinical Parameters for Risk Stratification in Medulloblastomas. Journal of Clinical Oncology, 2004, 22, 994-998.	0.8	81
30	Predicting Relapse in Patients With Medulloblastoma by Integrating Evidence From Clinical and Genomic Features. Journal of Clinical Oncology, 2011, 29, 1415-1423.	0.8	76
31	Medulloblastoma: Molecular Classification-Based Personal Therapeutics. Neurotherapeutics, 2017, 14, 265-273.	2.1	66
32	Circulating serpin tumor markers SCCA1 and SCCA2 are not actively secreted but reside in the cytosol of squamous carcinoma cells. International Journal of Cancer, 2000, 89, 368-377.	2.3	65
33	Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Acta Neuropathologica, 2020, 139, 223-241.	3.9	65
34	DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with <i>In Silico</i> Analysis to Identify Novel Therapeutic Targets. Clinical Cancer Research, 2016, 22, 3903-3914.	3.2	54
35	Identification ofPATCHED mutations in medulloblastomas by direct sequencing. Human Mutation, 2000, 16, 89-90.	1.1	51
36	Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer, 1996, 78, 864-873.	2.0	50

SCOTT L POMEROY

#	Article	IF	CITATIONS
37	Incidence, risk factors, and longitudinal outcome of seizures in longâ€ŧerm survivors of pediatric brain tumors. Epilepsia, 2015, 56, 1599-1604.	2.6	49
38	Rapid discrimination of pediatric brain tumors by mass spectrometry imaging. Journal of Neuro-Oncology, 2018, 140, 269-279.	1.4	45
39	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	2.4	37
40	Neuralized1 causes apoptosis and downregulates Notch target genes in medulloblastoma. Neuro-Oncology, 2010, 12, 1244-1256.	0.6	36
41	MicroRNA-1301 suppresses tumor cell migration and invasion by targeting the p53/UBE4B pathway in multiple human cancer cells. Cancer Letters, 2017, 401, 20-32.	3.2	34
42	Hedgehog-GLI Pathway in Medulloblastoma. Journal of Clinical Oncology, 2012, 30, 2154-2156.	0.8	30
43	Defining the Molecular Landscape of Ependymomas. Cancer Cell, 2015, 27, 613-615.	7.7	30
44	The evolution of medulloblastoma therapy to personalized medicine. F1000Research, 2017, 6, 490.	0.8	30
45	Neurotrophins in cerebellar granule cell development and medulloblastoma. Journal of Neuro-Oncology, 1997, 35, 347-352.	1.4	26
46	Molecular Biology of Medulloblastoma Therapy. Pediatric Neurosurgery, 2003, 39, 299-304.	0.4	26
47	Posterior Fossa Ependymomas: A Tale of Two Subtypes. Cancer Cell, 2011, 20, 133-134.	7.7	22
48	A developmental program drives aggressive embryonal brain tumors. Nature Genetics, 2014, 46, 2-3.	9.4	15
49	Molecular genetics of pediatric central nervous system tumors. Current Oncology Reports, 2006, 8, 423-429.	1.8	14
50	Crisis Standard of Care: Management of Infantile Spasms during <scp>COVID</scp> â€19. Annals of Neurology, 2020, 88, 215-217.	2.8	13
51	Postnatal addition of satellite cells to parasympathetic neurons. , 1996, 375, 518-525.		12
52	Loss of Consciousness in the Young Child. Pediatric Cardiology, 2021, 42, 234-254.	0.6	8
53	Medulloblastoma biology in the post-genomic era. Future Oncology, 2012, 8, 1597-1604.	1.1	7
54	Introduction: Survivors of childhood cancer: The new face of developmental disabilities. Developmental Disabilities Research Reviews, 2008, 14, 183-184.	2.9	5

SCOTT L POMEROY

#	Article	IF	CITATIONS
55	Brain cancer genomics and epigenomics. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 148, 785-797.	1.0	5
56	Intellectual and developmental disabilities research centers: Fifty years of scientific accomplishments. Annals of Neurology, 2019, 86, 332-343.	2.8	5
57	TORC1/2 kinase inhibition depletes glutathione and synergizes with carboplatin to suppress the growth of MYC-driven medulloblastoma. Cancer Letters, 2021, 504, 137-145.	3.2	5
58	Neural development and the ontogeny of central nervous system tumors. Neuron Glia Biology, 2004, 1, 127-133.	2.0	4
59	The Evolution of Child Neurology Training. Pediatric Neurology, 2017, 66, 3-4.	1.0	3
60	Epigenetics and survivorship in pediatric brain tumor patients. Journal of Neuro-Oncology, 2020, 150, 77-83.	1.4	3
61	Microarray Analysis and Proteomic Approaches to Drug Development. , 2006, , 74-88.		2
62	Validation of a computational phenotype for finding patients eligible for genetic testing for pathogenic PTEN variants across three centers. Journal of Neurodevelopmental Disorders, 2022, 14, 24.	1.5	2
63	Tracking the Fate of Cells in Health and Disease. New England Journal of Medicine, 2016, 375, 2494-2496.	13.9	1
64	A clinic devoted to peer victimization in special needs children. Annals of Neurology, 2016, 79, 167-168.	2.8	1
65	Neuro-oncology Training for the Child Neurology Resident. Seminars in Pediatric Neurology, 2011, 18, 120-122.	1.0	0
66	MB-27 * PATHWAY ANALYSIS OF A HUMAN NEURAL STEM CELL MODEL OF AGGRESSIVE MEDULLOBLASTOMA REVEALS CKD INBHIBITION AS A POTENTIAL THERAPEUTIC MODALITY. Neuro-Oncology, 2015, 17, iii25-iii26.	0.6	0
67	MB-103DISCoVERing INNOVATIVE THERAPIES: COMBINING GENETICALLY ACCURATE DISEASE MODELS OF MEDULLOBLASTOMA WITH ADVANCED IN SILICO ANALYSIS TO IDENTIFY NOVEL THERAPEUTIC TARGETS. Neuro-Oncology, 2016, 18, iii120.3-iii120.	0.6	0
68	EMBR-17. PINEOBLASTOMA SEGREGATES INTO MOLECULAR SUBTYPES WITH DISTINCT CLINICOPATHOLOGIC FEATURES: REPORT FROM THE RARE BRAIN TUMOR CONSORTIUM. Neuro-Oncology, 2018, 20, i72-i73.	0.6	0
69	PDTM-24. PINEOBLASTOMA SEGREGATES INTO MOLECULAR SUBTYPES WITH DISTINCT CLINICOPATHOLOGIC FEATURES: REPORT FROM THE RARE BRAIN TUMOUR CONSORTIUM. Neuro-Oncology, 2019, 21, vi192-vi192.	0.6	0
70	PDTM-32. RESOLVING MEDULLOBLASTOMA CELLULAR ARCHITECTURE BY SINGLE-CELL GENOMICS. Neuro-Oncology, 2019, 21, vi194-vi194.	0.6	0
71	SEQing to find hidden medulloblastoma cells. Cancer Cell, 2021, 39, 1452-1454.	7.7	0