Caroline Ann Masiello

List of Publications by Citations

Source: https://exaly.com/author-pdf/8187623/caroline-ann-masiello-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 38 78 9,334 h-index g-index citations papers 88 10,607 8.3 6.24 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
78	Biochar effects on soil biota 🗗 review. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 1812-1836	7.5	2707
77	New directions in black carbon organic geochemistry. <i>Marine Chemistry</i> , 2004 , 92, 201-213	3.7	549
76	Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. <i>Nature</i> , 2005 , 436, 538-41	50.4	447
75	Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	413
74	Black carbon in deep-Sea sediments. <i>Science</i> , 1998 , 280, 1911-3	33.3	383
73	Hydrologic properties of biochars produced at different temperatures. <i>Biomass and Bioenergy</i> , 2012 , 41, 34-43	5.3	326
72	New approaches to measuring biochar density and porosity. <i>Biomass and Bioenergy</i> , 2014 , 66, 176-185	5.3	315
71	Cycling and composition of organic matter in terrestrial and marine ecosystems. <i>Marine Chemistry</i> , 2004 , 92, 39-64	3.7	286
70	Temperature sensitivity of black carbon decomposition and oxidation. <i>Environmental Science & Environmental Science & Technology</i> , 2010 , 44, 3324-31	10.3	283
69	Controls on black carbon storage in soils. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	232
68	Reburial of fossil organic carbon in marine sediments. <i>Nature</i> , 2004 , 427, 336-9	50.4	201
67	Towards a global assessment of pyrogenic carbon from vegetation fires. <i>Global Change Biology</i> , 2016 , 22, 76-91	11.4	189
66	Physical Disintegration of Biochar: An Overlooked Process. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 326-332	11	177
65	Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. <i>PLoS ONE</i> , 2014 , 9, e108340	3.7	163
64	Carbon isotope geochemistry of the Santa Clara River. <i>Global Biogeochemical Cycles</i> , 2001 , 15, 407-416	5.9	153
63	Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 2015, 78, 135-143	3.1	150
62	Weathering controls on mechanisms of carbon storage in grassland soils. <i>Global Biogeochemical Cycles</i> , 2004 , 18, n/a-n/a	5.9	150

(2011-2013)

61	Biochar and microbial signaling: production conditions determine effects on microbial communication. <i>Environmental Science & Technology</i> , 2013 , 47, 11496-503	10.3	132
60	Biochar particle size, shape, and porosity act together to influence soil water properties. <i>PLoS ONE</i> , 2017 , 12, e0179079	3.7	126
59	Multiple Controls on the Chemical and Physical Structure of Biochars. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 3587-3597	3.9	120
58	Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biocharBand mixtures. <i>Journal of Hydrology</i> , 2016 , 533, 461-472	6	111
57	Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. <i>Engineering</i> , 2016 , 2, 426-437	9.7	111
56	Earthworm avoidance of biochar can be mitigated by wetting. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 1732-1737	7.5	110
55	Biochar physico-chemical properties as affected by environmental exposure. <i>Science of the Total Environment</i> , 2016 , 563-564, 237-46	10.2	80
54	White-rot basidiomycete-mediated decomposition of C60 fullerol. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 3162-8	10.3	78
53	Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and oxidation of the char surface. <i>Soil Biology and Biochemistry</i> , 2013 , 58, 248-254	7.5	77
52	Aged black carbon in marine sediments and sinking particles. <i>Geophysical Research Letters</i> , 2014 , 41, 2427-2433	4.9	69
51	Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. <i>Scientific Reports</i> , 2017 , 7, 11233	4.9	67
50	Evaluating two experimental approaches for measuring ecosystem carbon oxidation state and oxidative ratio. <i>Journal of Geophysical Research</i> , 2008 , 113,		58
49	An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1077-1082	7.5	53
48	Pyrolytic Treatment and Fertility Enhancement of Soils Contaminated with Heavy Hydrocarbons. <i>Environmental Science & Environmental Science & Environm</i>	10.3	50
47	Topographic controls on black carbon accumulation in Alaskan black spruce forest soils: implications for organic matter dynamics. <i>Biogeochemistry</i> , 2010 , 100, 39-56	3.8	47
46	Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	47
45	An NMR study of porous rock and biochar containing organic material. <i>Microporous and Mesoporous Materials</i> , 2013 , 178, 94-98	5.3	42
44	Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. <i>Biogeochemistry</i> , 2011 , 104, 275-291	3.8	42

43	Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance. Journal of Geophysical Research, 2009, 114, n/a-n/a		42
42	Is carbon within the global terrestrial biosphere becoming more oxidized? Implications for trends in atmospheric O2. <i>Global Change Biology</i> , 2006 , 12, 260-271	11.4	42
41	Charcoal Disrupts Soil Microbial Communication through a Combination of Signal Sorption and Hydrolysis. <i>ACS Omega</i> , 2016 , 1, 226-233	3.9	39
40	Dynamics of decadally cycling carbon in subsurface soils. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		38
39	Hydrocarbons in Lake Washington sediments. A 25-year retrospective in an urban lake. <i>Environmental Science & Environmental Sc</i>	10.3	37
38	Species-specific measurements of ectomycorrhizal turnover under N-fertilization: combining isotopic and genetic approaches. <i>Oecologia</i> , 2004 , 138, 419-25	2.9	33
37	Sources of CO2 evasion from two subtropical rivers in North America. <i>Biogeochemistry</i> , 2010 , 100, 211-	2358	32
36	Physical controls on dissolved inorganic radiocarbon variability in the California Current. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1998 , 45, 617-642	2.3	31
35	Final recommendations for reference materials in black carbon analysis. <i>Eos</i> , 2003 , 84, 582-582	1.5	30
34	Estimating the oxidative ratio of the global terrestrial biosphere carbon. <i>Biogeochemistry</i> , 2013 , 115, 23-32	3.8	29
33	Distributions of dissolved organic and inorganic carbon and radiocarbon in the eastern North Pacific continental margin. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1998 , 45, 689-713	3 ^{2.3}	29
32	Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources. <i>Environmental Science & Environmental Sci</i>	10.3	26
31	Ecology. Fire in the ocean. <i>Science</i> , 2013 , 340, 287-8	33.3	25
30	Biochar in climate change mitigation. <i>Nature Geoscience</i> , 2021 , 14, 883-892	18.3	25
29	Charring and non-additive chemical reactions during ramped pyrolysis: Applications to the characterization of sedimentary and soil organic material. <i>Organic Geochemistry</i> , 2014 , 77, 106-114	3.1	24
28	Biochar interferes with kiwifruit Fe-nutrition in calcareous soil. <i>Geoderma</i> , 2016 , 272, 10-19	6.7	23
27	Policy support for biochar: Review and recommendations. <i>GCB Bioenergy</i> , 2019 , 11, 364-380	5.6	22
26	Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Science Advances, 2020, 6, eaax8254	14.3	22

(2020-2017)

25	Soil Carbon and Nitrogen Responses to Nitrogen Fertilizer and Harvesting Rates in Switchgrass Cropping Systems. <i>Bioenergy Research</i> , 2017 , 10, 456-464	3.1	21
24	Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of Charcoal Mass and Isotopic Data. <i>Environmental Science & Environmental Science & Environ</i>	10.3	21
23	Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture. <i>Environmental Science & Environmental Science &</i>	10.3	20
22	Tree taxa and pyrolysis temperature interact to control the efficacy of pyrogenic organic matter formation. <i>Biogeochemistry</i> , 2016 , 130, 103-116	3.8	16
21	Valuing the Air Quality Effects of Biochar Reductions on Soil NO Emissions. <i>Environmental Science & Environmental Science</i>	10.3	15
20	Anhydrosugars as tracers in the Earth system. <i>Biogeochemistry</i> , 2019 , 146, 209-256	3.8	15
19	Effect of freeze-thaw cycling on grain size of biochar. <i>PLoS ONE</i> , 2018 , 13, e0191246	3.7	11
18	Volatile Gas Production by Methyl Halide Transferase: An In Situ Reporter Of Microbial Gene Expression In Soil. <i>Environmental Science & Expression For Macrobial Gene Reporter Of Microbial Gene Expression In Soil. Environmental Science & Expression For Macrobial Gene Expression In Soil. Environmental Science & Expression For Macrobial Gene Expression In Soil. Environmental Science & Expression For Macrobial Gene Expression In Soil. Environmental Science & Expression For Macrobial Gene Expression For Macrobial G</i>	10.3	10
17	Short-Term Changes in Physical and Chemical Properties of Soil Charcoal Support Enhanced Landscape Mobility. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 3098-3107	3.7	10
16	Nutrient Transport in Soils Amended with Biochar: A Transient Model with Two Stationary Phases and Intraparticle Diffusion. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4123-4135	3.9	10
15	Effect of environmental exposure on charcoal density and porosity in a boreal forest. <i>Science of the Total Environment</i> , 2017 , 592, 316-325	10.2	9
14	Forest soil carbon oxidation state and oxidative ratio responses to elevated CO2. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 1797-1811	3.7	9
13	Controls on the oxidative ratio of net primary production in agricultural ecosystems. <i>Biogeochemistry</i> , 2014 , 121, 581-594	3.8	9
12	Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils. <i>ACS Synthetic Biology</i> , 2018 , 7, 903-911	5.7	8
11	Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. <i>Frontiers in Microbiology</i> , 2020 , 11, 618373	5.7	7
10	Seasonal dynamics of CO2 profiles across a soil chronosequence, Santa Cruz, California. <i>Applied Geochemistry</i> , 2011 , 26, S132-S134	3.5	6
9	PlantBungal symbiosis affects litter decomposition during primary succession. <i>Oikos</i> , 2017 , 126, 801-811	4	5
8	A Split Methyl Halide Transferase AND Gate That Reports by Synthesizing an Indicator Gas. <i>ACS Synthetic Biology</i> , 2020 , 9, 3104-3113	5.7	5

7	First interactions with the hydrologic cycle determine pyrogenic carbon ß fate in the Earth system. <i>Earth Surface Processes and Landforms</i> , 2020 , 45, 2394-2398	3.7	4	
6	Organic geochemical approaches to identifying formation processes for middens and charcoal-rich features. <i>Organic Geochemistry</i> , 2016 , 94, 1-11	3.1	4	
5	Regional background O₃ and NO_{<i>x</i>} in the Houston&alvestonBrazoria (TX) region: a decadal-scale perspective. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 6565-6581	6.8	4	
4	Interdisciplinary intercomparison of black carbon analysis in soil and sediment. <i>Eos</i> , 2007 , 88, 344	1.5	3	
3	Water cost savings from soil biochar amendment: A spatial analysis. <i>GCB Bioenergy</i> , 2021 , 13, 133-142	5.6	3	
2	Plant species, not climate, controls aboveground biomass O2:CO2 exchange ratios in deciduous and coniferous ecosystems. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 2314-2324	3.7	2	
1	A zero-dimensional view of atmospheric degradation of levoglucosan (LEVCHEM_v1) using numerical chamber simulations. <i>Geoscientific Model Development</i> , 2021 , 14, 907-921	6.3	1	