Mateus Borba Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187391/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colloidal stability and degradability of silica nanoparticles in biological fluids: a review. Journal of Sol-Gel Science and Technology, 2022, 102, 41-62.	2.4	17
2	Competitive Protein Adsorption on Charge Regulating Silica-Like Surfaces: The Role of Protonation Equilibrium. Journal of Physics Condensed Matter, 2022, , .	1.8	1
3	Macromolecular Viral Entry Inhibitors as Broadâ€6pectrum Firstâ€Line Antivirals with Activity against SARS oVâ€2. Advanced Science, 2022, 9, e2201378.	11.2	8
4	Nanoparticle–Protein Interaction: Demystifying the Correlation between Protein Corona and Aggregation Phenomena. ACS Applied Materials & Interfaces, 2022, 14, 28559-28569.	8.0	13
5	Protein corona meets freeze-drying: overcoming the challenges of colloidal stability, toxicity, and opsonin adsorption. Nanoscale, 2021, 13, 753-762.	5.6	9
6	Nano-targeting lessons from the SARS-CoV-2. Nano Today, 2021, 36, 101012.	11.9	6
7	A nano perspective behind the COVID-19 pandemic. Nanoscale Horizons, 2021, 6, 842-855.	8.0	1
8	Precision medicine based on nanoparticles: the paradigm between targeting and colloidal stability. Nanomedicine, 2021, 16, 1451-1456.	3.3	3
9	Inside the Protein Corona: From Binding Parameters to Unstained Hard and Soft Coronas Visualization. Nano Letters, 2021, 21, 8250-8257.	9.1	27
10	Degradable and colloidally stable zwitterionic-functionalized silica nanoparticles. Nanomedicine, 2021, 16, 85-96.	3.3	2
11	Dose-dependent cell necrosis induced by silica nanoparticles. Toxicology in Vitro, 2020, 63, 104723.	2.4	7
12	Effect of particle functionalization and solution properties on the adsorption of bovine serum albumin and lysozyme onto silica nanoparticles. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110677.	5.0	24
13	Tailoring Pseudo-Zwitterionic Bifunctionalized Silica Nanoparticles: From Colloidal Stability to Biological Interactions. Langmuir, 2020, 36, 10756-10763.	3.5	13
14	Colloidal Stability and Redispersibility of Mesoporous Silica Nanoparticles in Biological Media. Langmuir, 2020, 36, 11442-11449.	3.5	27
15	Selective Targeting of Lymphoma Cells by Monoclonal Antibody Grafted onto Zwitterionicâ€Functionalized Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 1900446.	2.3	4
16	Gramâ€Negative Bacteria Targeting Mediated by Carbohydrate–Carbohydrate Interactions Induced by Surfaceâ€Modified Nanoparticles. Advanced Functional Materials, 2019, 29, 1904216.	14.9	43
17	Degradable Hollow Organosilica Nanoparticles for Antibacterial Activity. ACS Omega, 2019, 4, 1479-1486.	3.5	3
18	Shielding and stealth effects of zwitterion moieties in double-functionalized silica nanoparticles. Journal of Colloid and Interface Science, 2019, 553, 540-548.	9.4	20

Mateus Borba Cardoso

#	Article	IF	CITATIONS
19	Direct Assessment of Inhibitor and Solvent Effects on the Deposition Mechanism of Asphaltenes in a Brazilian Crude Oil. Energy & Fuels, 2019, 33, 4748-4757.	5.1	12
20	Tailoring the Antimicrobial Response of Cationic Nanocellulose-Based Foams through Cryo-Templating. ACS Applied Bio Materials, 2019, 2, 1975-1986.	4.6	41
21	Chemically modified silica-based sensors: Effect of the nature of organosilane. Sensors and Actuators B: Chemical, 2019, 282, 798-808.	7.8	5
22	Monitoring the Surface Chemistry of Functionalized Nanomaterials with a Microfluidic Electronic Tongue. ACS Sensors, 2018, 3, 716-726.	7.8	28
23	Freeze-drying of silica nanoparticles: redispersibility toward nanomedicine applications. Nanomedicine, 2018, 13, 179-190.	3.3	30
24	Dual Functionalization of Nanoparticles for Generating Corona-Free and Noncytotoxic Silica Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 41917-41923.	8.0	31
25	Silica Nanoparticle Applications in the Biomedical Field. , 2018, , 115-129.		8
26	Tetracycline@silver ions-functionalized mesoporous silica for high bactericidal activity at ultra-low concentration. Nanomedicine, 2018, 13, 1731-1751.	3.3	6
27	A comprehensive study of the relation between structural and physical chemical properties of acacia gums. Food Hydrocolloids, 2018, 85, 167-175.	10.7	17
28	Defeating Bacterial Resistance and Preventing Mammalian Cells Toxicity Through Rational Design of Antibiotic-Functionalized Nanoparticles. Scientific Reports, 2017, 7, 1326.	3.3	33
29	Using Atomic Force Microscopy To Detect Asphaltene Colloidal Particles in Crude Oils. Energy & Fuels, 2017, 31, 3738-3746.	5.1	20
30	Biomolecular corona formation: nature and bactericidal impact on surface-modified silica nanoparticles. Journal of Materials Chemistry B, 2017, 5, 8052-8059.	5.8	13
31	Shape Tailored Magnetic Nanorings for Intracellular Hyperthermia Cancer Therapy. Scientific Reports, 2017, 7, 14843.	3.3	41
32	Are antibiotic-functionalized nanoparticles a promising tool in antimicrobial therapies?. Nanomedicine, 2017, 12, 2587-2590.	3.3	4
33	Tailored Silica Nanoparticles Surface to Increase Drug Load and Enhance Bactericidal Response. Journal of the Brazilian Chemical Society, 2017, , .	0.6	7
34	Functionalized Silica Nanoparticles As an Alternative Platform for Targeted Drug-Delivery of Water Insoluble Drugs. Langmuir, 2016, 32, 3217-3225.	3.5	94
35	Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 16564-16572.	8.0	81
36	Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Advances, 2016, 6, 9411-9420.	3.6	26

#	Article	IF	CITATIONS
37	Role of Asphaltenes and Additives on the Viscosity and Microscopic Structure of Heavy Crude Oils. Energy & Fuels, 2016, 30, 3644-3651.	5.1	40
38	Correlating the Morphological Properties and Structural Organization of Monodisperse Spherical Silica Nanoparticles Grown on a Commercial Silica Surface. ChemPhysChem, 2015, 16, 2981-2994.	2.1	9
39	Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta, 2015, 141, 188-194.	5.5	66
40	Nanometric organisation in blends of gellan/xyloglucan hydrogels. Carbohydrate Polymers, 2014, 114, 48-56.	10.2	8
41	Partial Aggregation of Silver Nanoparticles Induced by Capping and Reducing Agents Competition. Langmuir, 2014, 30, 4879-4886.	3.5	51
42	Supercritical CO2–organosilane mixtures for modification of silica: Applications to epoxy prepolymer matrix. Chemical Engineering Journal, 2014, 241, 103-111.	12.7	16
43	Tailored Silica–Antibiotic Nanoparticles: Overcoming Bacterial Resistance with Low Cytotoxicity. Langmuir, 2014, 30, 7456-7464.	3.5	97
44	The cold storage of green bananas affects the starch degradation during ripening at higher temperature. Carbohydrate Polymers, 2013, 96, 137-147.	10.2	55
45	Selective Synthesis of Silver Nanoparticles onto Potassium Hexaniobate: Structural Organisation with Bactericidal Properties. ChemPhysChem, 2013, 14, 4075-4083.	2.1	6
46	Sweeter But Deadlier: Decoupling Size, Charge and Capping Effects in Carbohydrate Coated Bactericidal Silver Nanoparticles. Journal of Biomedical Nanotechnology, 2013, 9, 1817-1826.	1.1	8
47	Silica imprinted materials containing pharmaceuticals as a template: textural aspects. Journal of Sol-Gel Science and Technology, 2012, 64, 324-334.	2.4	21
48	Mechanism of interaction between colloids and bacteria as evidenced by tailored silica–lysozyme composites. Journal of Materials Chemistry, 2012, 22, 22851.	6.7	30
49	Characterization of Morphology and Active Agent Mobility within Hybrid Silica Sol–Gel Composites. Journal of Physical Chemistry C, 2012, 116, 13972-13979.	3.1	4
50	Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States. PLoS Neglected Tropical Diseases, 2012, 6, e1551.	3.0	32
51	Supramolecular assembly of biohybrid photoconversion systems. Energy and Environmental Science, 2011, 4, 181-188.	30.8	16
52	Plantain and Banana Starches: Granule Structural Characteristics Explain the Differences in Their Starch Degradation Patterns. Journal of Agricultural and Food Chemistry, 2011, 59, 6672-6681.	5.2	48
53	Size-selective silver nanoparticles: future of biomedical devices with enhanced bactericidal properties. Journal of Materials Chemistry, 2011, 21, 12267.	6.7	90
54	Sol–gel preparation of aminopropyl-silica-magnesia hybrid materials. Journal of Sol-Gel Science and Technology, 2011, 59, 135-144.	2.4	8

#	Article	IF	CITATIONS
55	Accessing the hidden lamellar nanostructure of semi-crystalline nascent polymers by small-angle X-ray scattering contrast variation. Journal of Applied Crystallography, 2011, 44, 1123-1126.	4.5	7
56	Silica–Maltose Composites: Obtaining Drug Carrier Systems Through Tailored Ultrastructural Nanoparticles. Journal of Pharmaceutical Sciences, 2011, 100, 2826-2834.	3.3	15
57	Helical Conformation in Crystalline Inclusion Complexes of Vâ€Amylose: A Historical Perspective. Macromolecular Symposia, 2011, 303, 1-9.	0.7	31
58	Investigation of detergent effects on the solution structure of spinach Light Harvesting Complex II. Journal of Physics: Conference Series, 2010, 251, 012041.	0.4	1
59	On the lamellar width distributions of starch. Carbohydrate Polymers, 2010, 81, 21-28.	10.2	44
60	In vivo degradation of banana starch: Structural characterization of the degradation process. Carbohydrate Polymers, 2010, 81, 291-299.	10.2	35
61	Protein Localization in Silica Nanospheres Derived via Biomimetic Mineralization. Advanced Functional Materials, 2010, 20, 3031-3038.	14.9	36
62	The effect of the sol–gel route on the characteristics of acid–base sensors. Sensors and Actuators B: Chemical, 2010, 151, 169-176.	7.8	26
63	Molecular and Crystal Structure of 7-Fold V-Amylose Complexed with 2-Propanol. Macromolecules, 2010, 43, 8628-8636.	4.8	59
64	Size control of highly ordered HfO ₂ nanotube arrays and a possible growth mechanism. Nanotechnology, 2009, 20, 455601.	2.6	21
65	Insight into the Structure of Light-Harvesting Complex II and Its Stabilization in Detergent Solution. Journal of Physical Chemistry B, 2009, 113, 16377-16383.	2.6	34
66	Evidences of amylose coil-to-helix transition in stored dilute solutions. Polymer, 2008, 49, 4386-4392.	3.8	13
67	Effect of the Alkaline Treatment on the Ultrastructure of C-Type Starch Granules. Biomacromolecules, 2008, 9, 1894-1901.	5.4	55
68	Single Crystals of Vâ€Amylose Inclusion Complexes. Macromolecular Symposia, 2008, 273, 1-8.	0.7	25
69	ESIPT-exhibiting protein probes: a sensitive method for rice proteins detection during starchextraction. Photochemical and Photobiological Sciences, 2007, 6, 99-102.	2.9	34
70	Single Crystals of V-Amylose Complexed with α-Naphthol. Biomacromolecules, 2007, 8, 1319-1326.	5.4	61
71	Influence of alkali concentration on the deproteinization and/or gelatinization of rice starch. Carbohydrate Polymers, 2007, 70, 160-165.	10.2	70
72	Self-assembly and structural characterization of Echinococcus granulosus antigen B recombinant subunit oligomers. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 278-285.	2.3	22

#	Article	IF	CITATIONS
73	Study of Protein Detection and Ultrastructure of Brazilian Rice Starch during Alkaline Extraction. Starch/Staerke, 2006, 58, 345-352.	2.1	32
74	Structural Evaluation of Phospholipidic Nanovesicles Containing Small Amounts of Chitosan. Journal of Nanoscience and Nanotechnology, 2006, 6, 2425-2431.	0.9	34