Mohamed M Fadlallah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187380/publications.pdf

Version: 2024-02-01

279487 329751 59 1,658 23 37 citations h-index g-index papers 61 61 61 763 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Biphenylene monolayer as a two-dimensional nonbenzenoid carbon allotrope: a first-principles study. Journal of Physics Condensed Matter, 2022, 34, 015001.	0.7	45
2	Band-gap engineering, magnetic behavior and Dirac-semimetal character in the MoSi ₂ N ₄ nanoribbon with armchair and zigzag edges. Journal Physics D: Applied Physics, 2022, 55, 035301.	1.3	23
3	Two-dimensional Dirac half-metal in porous carbon nitride C ₆ N ₇ monolayer via atomic doping. Nanotechnology, 2022, 33, 075707.	1.3	18
4	Investigation of vacancy defects and substitutional doping in AISb monolayer with double layer honeycomb structure: a first-principles calculation. Journal of Physics Condensed Matter, 2022, 34, 065701.	0.7	18
5	Ab-initio-driven prediction of puckered penta-like PdPSeX (X O, S, Te) Janus monolayers: Study on the electronic, optical, mechanical and photocatalytic properties. Applied Surface Science, 2022, 582, 152356.	3.1	55
6	Substitutional transition metal doping in MoSi ₂ N ₄ monolayer: structural, electronic and magnetic properties. Physical Chemistry Chemical Physics, 2022, 24, 3035-3042.	1.3	10
7			

#	Article	IF	CITATIONS
19	Two-dimensional Janus semiconductor BiTeCl and BiTeBr monolayers: a first-principles study on their tunable electronic properties <i>via</i> an electric field and mechanical strain. Physical Chemistry Chemical Physics, 2021, 23, 15216-15223.	1.3	32
20	Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties. Physical Chemistry Chemical Physics, 2021, 23, 24301-24312.	1.3	19
21	Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials. Physical Chemistry Chemical Physics, 2021, 23, 4865-4873.	1.3	21
22	MoSi ₂ N ₄ single-layer: a novel two-dimensional material with outstanding mechanical, thermal, electronic and optical properties. Journal Physics D: Applied Physics, 2021, 54, 155303.	1.3	160
23	Semiconducting Chalcogenide Alloys Based on the (Ge, Sn, Pb) (S, Se, Te) Formula with Outstanding Properties: A First-Principles Calculation Study. ACS Omega, 2021, 6, 9433-9441.	1.6	20
24	Pristine and holey graphene quantum dots: Optical properties using time independent and dependent density functional theory. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114602.	1.3	10
25	Electronic and magnetic properties of two-dimensional of FeX ($X = S$, Se, Te) monolayers crystallize in the orthorhombic structures. Applied Physics Letters, 2021, 118, .	1.5	39
26	Effect of electric field and vertical strain on the electro-optical properties of the MoSi2N4 bilayer: A first-principles calculation. Journal of Applied Physics, 2021, 129, .	1.1	48
27	Ab initio prediction of semiconductivity in a novel two-dimensional Sb2X3 (X= S, Se, Te) monolayers with orthorhombic structure. Scientific Reports, 2021, 11, 10366.	1.6	44
28	A Dirac-semimetal two-dimensional BeN4: Thickness-dependent electronic and optical properties. Applied Physics Letters, 2021, 118, .	1.5	64
29	Point Defects in a Two-Dimensional ZnSnN ₂ Nanosheet: A First-Principles Study on the Electronic and Magnetic Properties. Journal of Physical Chemistry C, 2021, 125, 13067-13075.	1.5	26
30	Prediction of two-dimensional bismuth-based chalcogenides $Bi < sub > 2 < / sub > X < sub > 3 < / sub > (X = S, Se,)$ Tj ETQq Physics, 2021, 54, 395103.	0 0 0 rgBT 1.3	Overlock 10
31	Metal-doped KNbO3 for visible light photocatalytic water splitting: A first principles investigation. Applied Physics Letters, 2021, 119, .	1.5	15
32	A novel two-dimensional boron–carbon–nitride (BCN) monolayer: A first-principles insight. Journal of Applied Physics, 2021, 130, .	1.1	23
33	Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping. Applied Surface Science, 2021, 559, 149862.	3.1	81
34	Adsorption of habitat and industry-relevant molecules on the MoSi2N4 monolayer. Applied Surface Science, 2021, 564, 150326.	3.1	50
35	Metal dichalcogenide nanomeshes: structural, electronic and magnetic properties. Physical Chemistry Chemical Physics, 2021, 23, 21183-21195.	1.3	10
36	Two-dimensional buckled tetragonal cadmium chalcogenides including CdS, CdSe, and CdTe monolayers as photo-catalysts for water splitting. Physical Chemistry Chemical Physics, 2021, 23, 12226-12232.	1.3	35

#	Article	IF	CITATIONS
37	Two-dimensional FeTe sub>2 /sub> and predicted Janus FeXS (X: Te and Se) monolayers with intrinsic half-metallic character: tunable electronic and magnetic properties <i>via /i> strain and electric field. Physical Chemistry Chemical Physics, 2021, 23, 24336-24343.</i>	1.3	44
38	Effect of adsorption and substitutional B doping at different concentrations on the electronic and magnetic properties of a BeO monolayer: a first-principles study. Physical Chemistry Chemical Physics, 2021, 23, 24922-24931.	1.3	26
39	Two-dimensional porous graphitic carbon nitride C6N7 monolayer: First-principles calculations. Applied Physics Letters, 2021, 119, .	1.5	57
40	Electronic, optical and thermoelectric properties of a novel two-dimensional SbXY (X = Se, Te; Y = Br, I) family: $\langle i \rangle$ ab initio $\langle i \rangle$ perspective. Physical Chemistry Chemical Physics, 2021, 23, 25866-25876.	1.3	17
41	Cation Mono―and Coâ€Doped Anatase TiO ₂ Nanotubes: An Ab Initio Investigation of Electronic and Optical Properties. Physica Status Solidi (B): Basic Research, 2020, 257, 1900217.	0.7	15
42	Vertical two-dimensional layered conjugated porous organic network structures of poly-benzimidazobenzophenanthroline (BBL): A first-principles study. Applied Physics Letters, 2020, 117, .	1.5	16
43	Dopant site in indium-doped SrTiO ₃ photocatalysts. Physical Chemistry Chemical Physics, 2020, 22, 19178-19187.	1.3	19
44	Effect of pore-size disorder on the electronic properties of semiconducting graphene nanomeshes. Nanotechnology, 2020, 31, 485710.	1.3	1
45	Electronic and optical properties of metal-doped TiO ₂ nanotubes: spintronic and photocatalytic applications. New Journal of Physics, 2020, 22, 093028.	1.2	11
46	Experimental and theoretical demonstrations of ultraviolet absorption enhancement in porous nano-membrane graphene. Carbon, 2019, 155, 65-70.	5.4	17
47	Boron nitride nanocones template for adsorbing NO2 and SO2: An ab initio investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 113, 188-193.	1.3	7
48	Graphene and graphene nanomesh supported nickel clusters: electronic, magnetic, and hydrogen storage properties. Nanotechnology, 2019, 30, 085709.	1.3	10
49	Doping of large-pore crown graphene nanomesh. Carbon, 2018, 133, 369-378.	5.4	17
50	Unravelling the interplay of geometrical, magnetic and electronic properties of metal-doped graphene nanomeshes. Journal of Physics Condensed Matter, 2017, 29, 055301.	0.7	7
51	Evaluation the Effect of Graphene Nanoplatelets on the Structure, Electrical and Thermoelectric Properties of Polyvinyl Alcohol. Journal of Advanced Physics, 2017, 6, 177-186.	0.4	1
52	Adsorption of sugars on Al- and Ga-doped boron nitride surfaces: A computational study. Applied Surface Science, 2016, 377, 9-16.	3.1	32
53	Defect engineering of the electronic transport through cuprous oxide interlayers. Scientific Reports, 2016, 6, 27049.	1.6	7
54	Evaluation of the effect of V ₂ O ₅ on the electrical and thermoelectric properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposite. Materials Research Express, 2016, 3, 035015.	0.8	11

#	Article	IF	CITATIONS
55	Transmission and Temperature Sensing Characteristics of a Binary and Ternary Photonic Band Gap. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 9-14.	0.1	15
56	Magnetic, electronic, and vibrational properties of metal and fluorinated metal phthalocyanines. Physical Review B, $2013, 87, .$	1.1	37
57	Modification of the electronic transport in Au by prototypical impurities and interlayers. Europhysics Letters, 2010, 89, 47003.	0.7	1
58	Charge transport through O-deficient Au-MgO-Au junctions. Physical Review B, 2009, 80, .	1.1	4
59	Electronic transport calculations for rough interfaces in Al, Cu, Ag, and Au. Journal of Physics Condensed Matter, 2009, 21, 315001.	0.7	5