
Thomas A Vilgis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8187224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the structural, thermal, crystalline and rheological behavior of various hydrothermally modified elephant foot yam (Amorphophallus paeoniifolius) starch. Food Hydrocolloids, 2022, 129, 107672.	5.6	14
2	Meat-, vegetarian-, and vegan sausages: Comparison of mechanics, friction, and structure. Physics of Fluids, 2022, 34, .	1.6	4
3	Molecular behavior of fluid gels – the crucial role of edges and particle surface in macroscopic properties. Food and Function, 2022, 13, 6902-6922.	2.1	3
4	Interaction of xanthan gums with galacto- and glucomannans. Part II: Heat induced synergistic gelation mechanism and their interaction with salt. JPhys Materials, 2021, 3, 034014.	1.8	9
5	Soft gels from bovine colostrum. International Journal of Gastronomy and Food Science, 2021, 23, 100278.	1.3	3
6	Physics of agarose fluid gels: Rheological properties and microstructure. Current Research in Food Science, 2021, 4, 436-448.	2.7	48
7	Complex coacervation of food grade antimicrobial lauric arginate with lambda carrageenan. Current Research in Food Science, 2021, 4, 53-62.	2.7	3
8	Hydrocolloid coated oleosomes for development of oleogels. Food Hydrocolloids, 2021, 119, 106832.	5.6	23
9	Understanding the native and hydrothermally modified elephant foot yam (Amorphophallus) Tj ETQq1 1 0.784 111958.	314 rgBT /(2.5	Overlock 10 4
10	Effect of different derivatives of paraffin waxes on crystallization of eutectic mixture of cocoa butter-coconut oil. Current Research in Food Science, 2021, 4, 784-799.	2.7	6
11	Microscopic characterization of fatty liver-based emulsions: Bridging microstructure and texture in foie gras and pâté. Physics of Fluids, 2021, 33, .	1.6	7
12	The physics of the mouthfeel of caviar and other fish roe. International Journal of Gastronomy and Food Science, 2020, 19, 100192.	1.3	11
13	Interaction of xanthan gums with galacto- and glucomannans. part I: molecular interactions and synergism in cold gelled systems. JPhys Materials, 2020, 3, 034013.	1.8	5
14	Comparative Study on Mixing Behavior of Binary Mixtures of Cocoa Butter/Tristearin (CB/TS) and Cocoa Butter/Coconut Oil (CB/CO). Foods, 2020, 9, 327.	1.9	13
15	Interactions of different hydrocolloids with milk proteins. JPhys Materials, 2020, 3, 044003.	1.8	2
16	Unser Essen wird industrialisiert. , 2020, , 115-189.		0
17	Zurück zum Genuss. , 2020, , 419-485.		0
18	Unser Essen wird kompliziert. , 2020, , 191-296.		0

Unser Essen wird kompliziert. , 2020, , 191-296. 18

#	Article	IF	CITATIONS
19	Alteration of the structural properties of inulin gels. Food Hydrocolloids, 2019, 89, 302-310.	5.6	14
20	Milk Emulsions: Structure and Stability. Foods, 2019, 8, 483.	1.9	9
21	Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel. Current Research in Food Science, 2019, 1, 31-42.	2.7	15
22	Soft matter physics meets the culinary arts: From polymers to jellyfish. International Journal of Gastronomy and Food Science, 2019, 16, 100135.	1.3	7
23	Effect of microfluidization on the microstructure and physical properties of a novel yoghurt formulation. Journal of Food Engineering, 2018, 237, 69-77.	2.7	23
24	Soybean oleosomes studied by small angle neutron scattering (SANS). Journal of Colloid and Interface Science, 2018, 529, 197-204.	5.0	30
25	Fractals in crystallizing food systems. Current Opinion in Food Science, 2018, 21, 39-45.	4.1	11
26	Pasta – weiche Materie zwischen Gummi und Glas. , 2018, , 1-31.		1
27	Dynamic Mechanical Response of Hybrid Physical Covalent Networks â^' Molecular Dynamics Simulation. Macromolecular Symposia, 2017, 373, 1600147.	0.4	2
28	Microencapsulation of soybean oil by spray drying using oleosomes. Journal Physics D: Applied Physics, 2016, 49, 054001.	1.3	9
29	Von zart bis fasrig: Proteindenaturierung im Fleisch. Nachrichten Aus Der Chemie, 2016, 64, 399-402.	0.0	0
30	Label-free <i>in situ</i> imaging of oil body dynamics and chemistry in germination. Journal of the Royal Society Interface, 2016, 13, 20160677.	1.5	14
31	The valence of food in pictures and on the plate: impacts on brain and body. International Journal of Gastronomy and Food Science, 2016, 5-6, 33-40.	1.3	11
32	Scaling Laws of Bottleâ€Brush Polymers in Dilute Solutions. Macromolecular Theory and Simulations, 2016, 25, 518-523.	0.6	24
33	Networks: From Rubbers to Food. Advances in Polymer Science, 2016, , 187-233.	0.4	7
34	Deformation-induced damage and recovery in model hydrogels – A molecular dynamics simulation. Journal of the Mechanics and Physics of Solids, 2016, 94, 372-387.	2.3	16
35	The physics of food. Journal Physics D: Applied Physics, 2016, 49, 110401.	1.3	2
36	Pre-gelatinized tapioca starch and its mixtures with xanthan gum and Î ¹ -carrageenan. Food Hydrocolloids, 2016, 56, 180-188.	5.6	55

#	Article	IF	CITATIONS
37	Physical Aspects of Meat Cooking: Time Dependent Thermal Protein Denaturation and Water Loss. Food Biophysics, 2016, 11, 34-42.	1.4	94
38	Soft matter food physics—the physics of food and cooking. Reports on Progress in Physics, 2015, 78, 124602.	8.1	74
39	A statistical mechanical approach to the Payne effect in filled rubbers. EXPRESS Polymer Letters, 2015, 9, 291-299.	1.1	30
40	Gels: model systems for soft matter food physics. Current Opinion in Food Science, 2015, 3, 71-84.	4.1	37
41	Driven translocation of a polymer: Role of pore friction and crowding. Journal of Chemical Physics, 2014, 141, 124112.	1.2	20
42	Mechanical Response of Hybrid Cross-Linked Networks to Uniaxial Deformation: A Molecular Dynamics Model. Macromolecules, 2014, 47, 8795-8807.	2.2	14
43	Effect of heat treatment on wheat dough rheology and wheat protein solubility. Food Science and Technology International, 2014, 20, 341-351.	1.1	70
44	Impact of sucrose and trehalose on different agarose-hydrocolloid systems. Food Hydrocolloids, 2014, 41, 44-52.	5.6	30
45	Molecular Dynamic Study of the Structure and Dynamics of Polymer Melt at Solid Surfaces. Soft Materials, 2014, 12, S56-S70.	0.8	9
46	Force spectroscopy of polymer desorption: theory and molecular dynamics simulations. Soft Matter, 2014, 10, 2785.	1.2	16
47	Structure and dynamics of polymer melt confined between two solid surfaces: A molecular dynamics study. Journal of Chemical Physics, 2014, 141, 044907.	1.2	24
48	Rupture Dynamics of Macromolecules. Lecture Notes in Applied and Computational Mechanics, 2013, , 1-42.	2.0	0
49	Influence of Nongelling Hydrocolloids on the Gelation of Agarose. Biomacromolecules, 2013, 14, 4116-4124.	2.6	52
50	Driven translocation of a polymer: Fluctuations at work. Physical Review E, 2013, 87, .	0.8	25
51	The Role of Intact Oleosin for Stabilization and Function of Oleosomes. Journal of Physical Chemistry B, 2013, 117, 13872-13883.	1.2	75
52	Texture, taste and aroma: multi-scale materials and the gastrophysics of food. Flavour, 2013, 2, .	2.3	10
53	Die StÄtke der StÄtke. Physik in Unserer Zeit, 2013, 44, 102-102.	0.0	1
54	Short―and Longâ€Range Interactions Governing the Viscoelastic Properties during Wheat Dough and Model Dough Development. Journal of Texture Studies, 2013, 44, 317-332.	1.1	40

#	Article	IF	CITATIONS
55	Relaxation Mechanisms of Physical Hydrogels Networks. , 2013, , 223-231.		1
56	Tension enhancement in branched macromolecules upon adhesion on a solid substrate. Europhysics Letters, 2012, 97, 58003.	0.7	13
57	Thermal decomposition of a honeycomb-network sheet: A molecular dynamics simulation study. Journal of Chemical Physics, 2012, 137, 054901.	1.2	2
58	Thermal Degradation of Adsorbed Bottleâ€Brush Macromolecules: When Do Strong Covalent Bonds Break Easily?. Macromolecular Symposia, 2012, 316, 112-122.	0.4	6
59	Force-induced breakdown of flexible polymerized membrane. Physical Review E, 2012, 85, 021805.	0.8	4
60	Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network. Journal of Chemical Physics, 2012, 137, 244908.	1.2	7
61	Soy milk oleosome behaviour at the air–water interface. Faraday Discussions, 2012, 158, 157.	1.6	25
62	Soybean Oleosomes Behavior at the Air–Water Interface. Journal of Physical Chemistry B, 2012, 116, 10832-10841.	1.2	36
63	Polymer Detachment Kinetics from Adsorbing Surface: Theory, Simulation and Similarity to Infiltration into Porous Medium. Macromolecules, 2012, 45, 4371-4380.	2.2	20
64	Configurational Fluctuation Effects on Counterion Condensation for a Polyelectrolyte Chain. Macromolecular Theory and Simulations, 2012, 21, 582-590.	0.6	5
65	Structure and dynamics of a polymer melt at an attractive surface. European Physical Journal E, 2012, 35, 97.	0.7	45
66	Hydrocolloids between soft matter and taste: Culinary polymer physics. International Journal of Gastronomy and Food Science, 2012, 1, 46-53.	1.3	16
67	Forced translocation of a polymer: Dynamical scaling versus molecular dynamics simulation. Physical Review E, 2012, 85, 041801.	0.8	59
68	Aber bitte mit Sahne. Physik in Unserer Zeit, 2012, 43, 102-102.	0.0	1
69	Impact of xanthan gum, sucrose and fructose on the viscoelastic properties of agarose hydrogels. Food Hydrocolloids, 2012, 29, 298-307.	5.6	44
70	Thermal Degradation of Adsorbed Bottle-Brush Macromolecules: A Molecular Dynamics Simulation. Macromolecules, 2011, 44, 3981-3987.	2.2	18
71	Fractional Brownian motion approach to polymer translocation: The governing equation of motion. Physical Review E, 2011, 83, 011802.	0.8	54
72	Thermal degradation of unstrained single polymer chain: Non-linear effects at work. Journal of Chemical Physics, 2011, 134, 224901.	1.2	19

#	Article	IF	CITATIONS
73	Rheological Study of the Gelation Process of Agarose-Based Solutions. Food Biophysics, 2011, 6, 450-460.	1.4	63
74	Polymer chain scission at constant tension —An example of force-induced collective behaviour. Europhysics Letters, 2011, 94, 48003.	0.7	20
75	Dynamics of two topologically entangled chains. Journal of Mathematical Physics, 2011, 52, 043301.	0.5	0
76	Dynamics of pulled desorption with effects of excluded-volume interaction: The p-Laplacian diffusion equation and its exact solution. Europhysics Letters, 2011, 95, 48006.	0.7	4
77	Polymer Chain Adsorption on a Solid Surface: Scaling Arguments and Computer Simulations. Springer Series in Surface Sciences, 2011, , 185-204.	0.3	6
78	O(N) Generalized nonlinear sigma model and its applications. Physics of Atomic Nuclei, 2010, 73, 295-303.	0.1	2
79	Effect of Finite Extensibility on the Equilibrium Chain Size. Macromolecular Theory and Simulations, 2010, 19, 414-420.	0.6	23
80	Polymer desorption under pulling a 1st — order phase transition without phase coexistence. Physics Procedia, 2010, 3, 1459-1474.	1.2	3
81	Thermal breakage and self-healing of a polymer chain under tensile stress. Journal of Chemical Physics, 2010, 132, 204902.	1.2	23
82	Polymer desorption under pulling: A dichotomic phase transition. Physical Review E, 2009, 79, 030802.	0.8	23
83	Comment on â€ [~] Anomalous dynamics of unbiased polymer translocation through a narrow pore' and other recent papers by D Panja, G Barkema and R Ball. Journal of Physics Condensed Matter, 2009, 21, 098001.	0.7	14
84	Stretching a semiflexible polymer with orientation-dependent interactions. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P02013.	0.9	0
85	Polymer Translocation through a Nanopore: A Showcase of Anomalous Diffusion. Annals of the New York Academy of Sciences, 2009, 1161, 95-104.	1.8	7
86	Pulling an adsorbed polymer chain off a solid surface. European Physical Journal E, 2009, 29, 285-297.	0.7	20
87	Forced-Induced Desorption of a Polymer Chain Adsorbed on an Attractive Surface: Theory and Computer Experiment. Macromolecules, 2009, 42, 2236-2250.	2.2	31
88	Adsorption kinetics of a single polymer on a solid plane. Physical Review E, 2008, 77, 061603.	0.8	20
89	Adsorption of Multiblock and Random Copolymer on a Solid Surface: Critical Behavior and Phase Diagram. Macromolecules, 2008, 41, 2920-2930.	2.2	30
90	Enhanced Orientational Ordering of Water Dipoles in Uniaxially Stretched Hydrogels. Journal of Physical Chemistry B, 2008, 112, 16490-16496.	1.2	5

#	Article	IF	CITATIONS
91	Scattering Properties of Dipolar Gels. Macromolecules, 2008, 41, 6210-6216.	2.2	1
92	Dynamics of a stretched nonlinear polymer chain. Journal of Chemical Physics, 2008, 129, 154908.	1.2	16
93	Path-integral approach to the dynamics of a random chain with rigid constraints. Physical Review E, 2008, 77, 021802.	0.8	6
94	GENERALIZED NONLINEAR SIGMA MODELS AND PATH-INTEGRAL APPROACH TO POLYMER DYNAMICS. , 2008, , .		1
95	DESCRIPTION OF THE DYNAMICS OF A RANDOM CHAIN WITH RIGID CONSTRAINTS IN THE PATH-INTEGRAL FRAMEWORK. , 2008, , .		0
96	Driven polymer translocation through a nanopore: A manifestation of anomalous diffusion. Europhysics Letters, 2007, 79, 18002.	0.7	109
97	Conformational Transitions of Polymers in Critical Binary Fluids. Macromolecules, 2007, 40, 6765-6769.	2.2	9
98	Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E, 2007, 76, 010801.	0.8	122
99	Globular structures of a helix-coil copolymer: Self-consistent treatment. Journal of Chemical Physics, 2007, 126, 034902.	1.2	3
100	Interface stability and copolymers: Application to food systems. Food Hydrocolloids, 2007, 21, 870-878.	5.6	12
101	Reinforcement Theories. , 2007, , 599-608.		5
102	Kinetics of Copolymer Localization at a Selective Liquidâ^'Liquid Interface. Macromolecules, 2006, 39, 1234-1244.	2.2	10
103	Field-Driven Translocation of Regular Block Copolymers through a Selective Liquidâ^'Liquid Interface. Macromolecules, 2006, 39, 7115-7124.	2.2	5
104	Multiblock copolymers at selective liquid–liquid interfaces: Toward a block size chromatography. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2572-2588.	2.4	3
105	Entropically driven transition to a liquid-crystalline polymer globule. Europhysics Letters, 2006, 74, 76-82.	0.7	4
106	Copolymer adsorption kinetics at a selective liquid-liquid interface: Scaling theory and computer experiment. Europhysics Letters, 2006, 73, 204-210.	0.7	13
107	Aggregates of rod-coil diblock copolymers adsorbed at a surface. Journal of Chemical Physics, 2006, 124, 234909.	1.2	8
108	Rod-Coil Globular Structures - Simple Models for Proteins. Macromolecular Chemistry and Physics, 2005, 206, 112-124.	1.1	7

#	Article	IF	CITATIONS
109	Time scales in the reinforcement of elastomers. Polymer, 2005, 46, 4223-4229.	1.8	80
110	Localization of a multiblock copolymer at a selective interface: Scaling predictions and Monte Carlo verification. Journal of Chemical Physics, 2005, 122, 094907.	1.2	25
111	Constrained dynamics of a polymer ring enclosing a constant area. Physical Review E, 2005, 71, 021801.	0.8	3
112	Directed polymers with constrained winding angle. Physical Review E, 2005, 71, 061802.	0.8	7
113	Self-consistent variational theory for globules. Europhysics Letters, 2005, 71, 49-55.	0.7	14
114	Dynamics of a polymer in a quenched random medium: A Monte Carlo investigation. Europhysics Letters, 2004, 68, 384-390.	0.7	6
115	Diffusion constants of polymers in mixed solvents. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 3976-3980.	2.4	1
116	Scattering from Ferrogels. Macromolecular Theory and Simulations, 2004, 13, 592-602.	0.6	5
117	Chains in Critical Fluids and Nanopores. Macromolecular Theory and Simulations, 2004, 13, 743-747.	0.6	1
118	Rod-coil multiblock copolymers: Structure and stability. Europhysics Letters, 2004, 68, 44-50.	0.7	13
119	Localization and freezing of a Gaussian chain in a quenched random potential. Journal of Chemical Physics, 2004, 120, 7194-7205.	1.2	4
120	Semiflexible polymers in a random environment. Journal of Chemical Physics, 2004, 121, 5505-5513.	1.2	7
121	Polymer chain in a quenched random medium: slow dynamics and ergodicity breaking. European Physical Journal B, 2003, 33, 61-73.	0.6	30
122	Swelling behavior of responsive amphiphilic gels. Journal of Chemical Physics, 2003, 119, 3541-3549.	1.2	5
123	Dynamics of Large Semiflexible Chains Probed by Fluorescence Correlation Spectroscopy. Physical Review Letters, 2003, 90, 218301.	2.9	64
124	Preferential adsorption of hydrophobic-polar model proteins on patterned surfaces. Physical Review E, 2003, 67, 050901.	0.8	12
125	Collapse or swelling dynamics of homopolymer rings: Self-consistent Hartree approach. Journal of Chemical Physics, 2003, 118, 937-951.	1.2	9
126	The Thermoelasticity of Rubberlike Materials and Related Constitutive Laws. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 87-93.	1.2	9

#	Article	IF	CITATIONS
127	Polymer gels and brushes at surfaces. Macromolecular Symposia, 2003, 200, 67-80.	0.4	2
128	Single-protein force spectroscopy: Sequence dependence. Europhysics Letters, 2002, 57, 817-823.	0.7	9
129	On the Mechanism of Hydrodynamic Reinforcement in Elastic Composites. Macromolecules, 2002, 35, 9204-9210.	2.2	116
130	Self-generated disorder: from spin glasses to the glassy homopolymer globule. Journal of Non-Crystalline Solids, 2002, 307-310, 199-207.	1.5	0
131	Reinforcement of elastomers. Current Opinion in Solid State and Materials Science, 2002, 6, 195-203.	5.6	482
132	Single Chain Stretching of Block Copolymers under Different Solvent Conditions. Macromolecules, 2002, 35, 6043-6054.	2.2	20
133	Single chain force spectroscopy - Reading the sequence of HP protein models. European Physical Journal B, 2002, 28, 451-465.	0.6	8
134	Gels at interfaces. European Physical Journal E, 2001, 6, 201-209.	0.7	17
135	Polyelectrolyte chains in poor solvent. A variational description of necklace formation. European Physical Journal E, 2001, 6, 259-270.	0.7	22
136	Adsorption of hydrophobic polyelectrolytes onto oppositely charged surfaces. European Physical Journal E, 2001, 6, 37-47.	0.7	23
137	Weak violation of universality for polyelectrolyte chains: Variational theory and simulations. European Physical Journal E, 2001, 4, 475-487.	0.7	13
138	Self-generated disorder and structural glass formation in homopolymer globules. Physical Review E, 2001, 64, 051112.	0.8	14
139	Dynamic relaxations of polymers in mixed solvents. Macromolecular Theory and Simulations, 2000, 9, 628-640.	0.6	3
140	Evaluation of self-affine surfaces and their implication for frictional dynamics as illustrated with a Rouse material. Computational and Theoretical Polymer Science, 2000, 10, 53-61.	1.1	54
141	Polymer theory: path integrals and scaling. Physics Reports, 2000, 336, 167-254.	10.3	58
142	Stretching necklaces. European Physical Journal E, 2000, 2, 289-300.	0.7	33
143	Polyelectrolyte gels in poor solvent: Elastic moduli. European Physical Journal E, 2000, 3, 237-244.	0.7	16
144	How to break the replica symmetry in structural glasses. Europhysics Letters, 2000, 49, 162-168.	0.7	1

#	Article	IF	CITATIONS
145	Slow plasmon modes in polymeric salt solutions. Europhysics Letters, 2000, 51, 608-613.	0.7	5
146	Dynamics of structural models with a long-range interaction: Glassy versus nonglassy behavior. Physical Review E, 2000, 62, 1560-1576.	0.8	4
147	Langevin dynamics of polymeric manifolds in melts. Journal of Physics Condensed Matter, 1999, 11, A307-A315.	0.7	1
148	The Hartree approximation in dynamics of polymeric manifolds in the melt. Journal of Chemical Physics, 1999, 110, 639-651.	1.2	16
149	Collective dynamics of random polyampholytes. Journal of Chemical Physics, 1999, 110, 4651-4657.	1.2	5
150	Mean-field-theory for polymers in mixed solvents. Thermodynamic and structural properties. Macromolecular Theory and Simulations, 1999, 8, 285-295.	0.6	3
151	Compression of finite size polymer brushes. Physical Chemistry Chemical Physics, 1999, 1, 2077-2081.	1.3	5
152	Polyelectrolyte gel elasticity in poor solvent. Macromolecular Symposia, 1999, 146, 223-226.	0.4	1
153	Langevin dynamics of the glass forming polymer melt: Fluctuations around the random phase approximation. European Physical Journal B, 1998, 6, 233-243.	0.6	6
154	Crosslinked polymer chains with excluded volume: A new class of branched polymers?. Macromolecular Theory and Simulations, 1998, 7, 59-63.	0.6	4
155	Adsorption of polymer chains onto charged spheres: Experiment and theory. Macromolecular Theory and Simulations, 1998, 7, 241-247.	0.6	45
156	Dynamics of polymeric manifolds in melts: the Hartree approximation. European Physical Journal B, 1998, 6, 497-501.	0.6	3
157	Some geometrical and topological problems in polymer physics. Physics Reports, 1998, 298, 251-370.	10.3	83
158	Microgels and fractal structures at interfaces and surfaces. European Physical Journal B, 1998, 2, 69-74.	0.6	7
159	Polymer adsorption on heterogeneous surfaces. European Physical Journal B, 1998, 3, 217-223.	0.6	45
160	Dynamics of Dense Polyelectrolyte Solutions. Macromolecules, 1998, 31, 5898-5903.	2.2	4
161	Topological Interactions in Multiply Linked DNA Rings. Physical Review Letters, 1998, 80, 881-884.	2.9	28
162	Elasticity in strongly interacting soft solids: A polyelectrolyte network. Physical Review E, 1998, 57, 6865-6874.	0.8	17

#	Article	IF	CITATIONS
163	Behavior of a polymer chain in a critical binary solvent. Europhysics Letters, 1998, 42, 7-12.	0.7	7
164	Langevin dynamics of a polymer with internal distance constraints. Physical Review E, 1997, 55, 3037-3043.	0.8	4
165	Evidence for chain shrinkage in binary polymer blends: Light scattering experiments and theory. Physical Review E, 1997, 55, 5723-5730.	0.8	8
166	On the conformation of non-adsorbing polymers in colloidal suspensions. Journal of Chemical Physics, 1997, 107, 7502-7511.	1.2	4
167	Cross-linked polymer chains: Scaling and exact results. , 1997, , 403-413.		0
168	Elasticity of entangled polymer loops: Olympic gels. Physical Review E, 1997, 56, R1314-R1317.	0.8	23
169	Dynamics of a Polymer Test Chain in a Glass Forming Matrix: The Hartree Approximation. Journal De Physique II, 1997, 7, 1469-1487.	0.9	4
170	Microphase Separation Transition for Polyelectrolyte Gels in Poor Solvents. Journal De Physique II, 1997, 7, 627-635.	0.9	12
171	On the Elastic Behavior of a Single Polyelectrolyte Chain. Journal De Physique II, 1997, 7, 1273-1285.	0.9	4
172	Universal properties in the dynamical deformation of filled rubbers. Journal of Physics Condensed Matter, 1996, 8, L409-L412.	0.7	72
173	Orientational Correlations and the Dynamical Behavior of Diblock Copolymers. Macromolecules, 1996, 29, 7588-7593.	2.2	2
174	Static scattering from multicomponent polyelectrolyte solutions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1996, 100, 815-820.	0.9	3
175	Electrostatic rigidity of polyelectrolytes from reparametrization invariance. Macromolecular Theory and Simulations, 1996, 5, 121-127.	0.6	1
176	The structure and phase transitions in polymer blends, diblock copolymers and liquid crystalline polymers: The Landau-Ginzburg approach. Macromolecular Theory and Simulations, 1996, 5, 573-643.	0.6	52
177	Path integral calculation of the writhe for circular semiflexible polymers. Journal of Physics A, 1996, 29, 939-948.	1.6	8
178	Size and Scaling in Ideal Polymer Networks. Exact Results. Journal De Physique, I, 1996, 6, 1451-1460.	1.2	7
179	Polydispersity and Ordered Phases in Solutions of Rodlike Macromolecules. Physical Review Letters, 1996, 76, 1396-1399.	2.9	42
180	Comment on "Internal Constraints Induce Localization in an Isolated Polymer Molecule― Physical Review Letters, 1996, 77, 4276-4276.	2.9	4

#	Article	IF	CITATIONS
181	Entangled polymer rings in 2D and confinement. Journal of Physics A, 1996, 29, 3893-3902.	1.6	9
182	Polyelectrolyte manifolds. Europhysics Letters, 1996, 35, 327-332.	0.7	6
183	Swelling and fractal heterogeneities in networks. Macromolecular Symposia, 1995, 93, 205-212.	0.4	5
184	Scattered intensity by a cross-linked polymer blend. Macromolecular Theory and Simulations, 1995, 4, 67-76.	0.6	18
185	Brushes formed by self-similarly branched polymers and random manifolds. Macromolecular Theory and Simulations, 1995, 4, 111-117.	0.6	Ο
186	Dirac chains in the presence of hairpins. Physical Review E, 1995, 52, 3973-3988.	0.8	7
187	Melts of polymeric fractals and Dâ€dimensional manifolds: Saturation vs screening. Journal of Chemical Physics, 1995, 102, 6586-6594.	1.2	5
188	Statistical mechanics of macromolecular networks without replicas. Journal of Physics A, 1995, 28, 6655-6668.	1.6	25
189	The statistical mechanics of a melt of polymer rings. Journal of Physics A, 1995, 28, 1149-1167.	1.6	42
190	Physical Adsorption of Polymers on Disordered Filler Surfaces. Rubber Chemistry and Technology, 1995, 68, 26-36.	0.6	23
191	Effect of filler networking on the dynamic mechanical properties of crosslinked polymer solids. Macromolecular Symposia, 1995, 93, 253-260.	0.4	21
192	Scaling Theory of Planar Brushes Formed by Branched Polymers. Macromolecules, 1995, 28, 1008-1015.	2.2	86
193	A Field Theory for Polymeric Networks with Excluded Volume. Journal De Physique, I, 1995, 5, 1241-1246.	1.2	4
194	Ideal <i>d</i> -Dimensional Polymer Networks on <i>d</i> _f -Dimensional Fractals. Europhysics Letters, 1994, 25, 175-180.	0.7	4
195	Dislocations as Flexible Objects: Interactions and Unbinding Transition. Europhysics Letters, 1994, 28, 647-652.	0.7	1
196	Dynamics of heterogeneous polymer networks. Physical Review E, 1994, 49, 2167-2174.	0.8	9
197	Single-chain statistics and the upper wave-vector cutoff in polymer blends. Physical Review E, 1994, 50, 2087-2092.	0.8	12
198	Microphase separation in topologically constrained ring copolymers. Physical Review E, 1994, 49, 3097-3101.	0.8	16

#	Article	IF	CITATIONS
199	Viscosity of weakly charged polyelectrolyte solutions: The screening of hydrodynamic interactions. Macromolecular Theory and Simulations, 1994, 3, 73-77.	0.6	4
200	Statics and dynamics of heterogeneous polymer networks. Macromolecular Theory and Simulations, 1994, 3, 271-293.	0.6	17
201	Persistence lengths of semiflexible chains — methods and approximations. Macromolecular Theory and Simulations, 1994, 3, 543-555.	0.6	16
202	Stability analysis and scattering properties of charged crosslinked blends in solution. Macromolecular Theory and Simulations, 1994, 3, 557-566.	0.6	9
203	General formulation of the statistical mechanics of multicomponent polymer systems. Acta Polymerica, 1994, 45, 160-167.	1.4	1
204	The confirmation of conducting polymer chains: Hubbard polymers. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 195, 151-155.	0.9	0
205	Scattering and Phase Behavior of Cross-Linked Blends. Macromolecules, 1994, 27, 1172-1176.	2.2	38
206	Microscopic Theory of Polymer Chains Containing Attractive Units: Copolymers, Ionomers, and Complex Formation. Macromolecules, 1994, 27, 6465-6472.	2.2	6
207	Disorder-Induced Enhancement of Polymer Adsorption - A Model for the Rubber-Polymer Interaction in Filled Rubbers. Macromolecules, 1994, 27, 7846-7854.	2.2	36
208	Some unusual features of the configuration of polymer loops in a melt. Macromolecular Symposia, 1994, 87, 171-176.	0.4	0
209	The tube diameter in polymer melts, its existence. and its relation to the quantum Hall effect. Journal De Physique, I, 1994, 4, 843-862.	1.2	6
210	Comparison of the constrained junction and the slip-link models of rubber elasticity. Macromolecules, 1993, 26, 6657-6659.	2.2	25
211	Polymer chain in a random array of topological obstacles: Classification and statistics of complex loops. Physical Review E, 1993, 48, 3314-3320.	0.8	7
212	Phase transitions in diblock copolymers: Theory and Monte Carlo simulations. Physical Review E, 1993, 48, 377-390.	0.8	68
213	Conformation of a polymer chain dissolved in a critical fluid. Journal De Physique II, 1993, 3, 1779-1786.	0.9	15
214	Rubber elasticity and inhomogeneities in crosslink density. Macromolecules, 1992, 25, 399-403.	2.2	21
215	Theory of static scattering from weakly charged copolymers in solution. Die Makromolekulare Chemie Theory and Simulations, 1992, 1, 3-23.	1.0	5
216	Dynamics of multicomponent polymer mixtures: theoretical models. Die Makromolekulare Chemie Theory and Simulations, 1992, 1, 333-358.	1.0	5

#	Article	IF	CITATIONS
217	Mean-field theory of concentrated polyelectrolyte solutions: Statics and dynamics. Physical Review A, 1991, 43, 6857-6874.	1.0	67
218	A dilute solution of garlands is equivalent to them-vector model. European Physical Journal B, 1990, 79, 105-108.	0.6	1
219	Polymer Networks. , 1989, , 227-279.		6
220	Dynamical critical behavior during chemical gelation and vulcanization. Macromolecules, 1988, 21, 2536-2542.	2.2	128
221	Correctly averaged non-Gaussian theory of rubberlike elasticity. Application to the description of the behavior of poly(dimethylsiloxane) bimodal networks. Macromolecules, 1986, 19, 1212-1217.	2.2	21
222	Deformation dependence of the form factor of a crosslinked chain in a rubber: Entanglement and orientational effect. Polymer, 1986, 27, 1154-1162.	1.8	17