
Gabriele Saretzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8186761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial sirtuins in stem cells and cancer. FEBS Journal, 2022, 289, 3393-3415.	2.2	20
2	CRISPR/Cas: A New Tool in the Research of Telomeres and Telomerase as Well as a Novel Form of Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 3002.	1.8	4
3	Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate. Experimental Gerontology, 2022, 163, 111798.	1.2	8
4	Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson's disease associated with enhanced autophagy. Progress in Neurobiology, 2021, 199, 101953.	2.8	33
5	Aberrant Dyskerin Expression Is Related to Proliferation and Poor Survival in Endometrial Cancer. Cancers, 2021, 13, 273.	1.7	12
6	Neutrophils induce paracrine telomere dysfunction and senescence in ROSâ€dependent manner. EMBO Journal, 2021, 40, e106048.	3.5	101
7	Protective effect of argan oil on DNA damage <i>inÂvivo</i> and <i>inÂvitro</i> . Biomarkers, 2021, 26, 425-433.	0.9	3
8	Telomerase in Brain: The New Kid on the Block and Its Role in Neurodegenerative Diseases. Biomedicines, 2021, 9, 490.	1.4	20
9	Culturing Keratinocytes on Biomimetic Substrates Facilitates Improved Epidermal Assembly In Vitro. Cells, 2021, 10, 1177.	1.8	8
10	Mediterranean diet and the hallmarks of ageing. European Journal of Clinical Nutrition, 2021, 75, 1176-1192.	1.3	64
11	Senescence and Inflammatory Markers for Predicting Clinical Progression in Parkinson's Disease: The ICICLE-PD Study. Journal of Parkinson's Disease, 2020, 10, 193-206.	1.5	34
12	Telomerase Does Not Improve DNA Repair in Mitochondria upon Stress but Increases MnSOD Protein under Serum-Free Conditions. International Journal of Molecular Sciences, 2020, 21, 27.	1.8	23
13	Endometriosis Is Associated with a Significant Increase in hTERC and Altered Telomere/Telomerase Associated Genes in the Eutopic Endometrium, an Ex-Vivo and In Silico Study. Biomedicines, 2020, 8, 588.	1.4	10
14	The association of telomere length and telomerase activity with adverse outcomes in older patients with non-ST-elevation acute coronary syndrome. PLoS ONE, 2020, 15, e0227616.	1.1	6
15	Title is missing!. , 2020, 15, e0227616.		0
16	Title is missing!. , 2020, 15, e0227616.		0
17	Title is missing!. , 2020, 15, e0227616.		0

2

#	Article	IF	CITATIONS
19	Telomerase and Telomeres in Endometrial Cancer. Frontiers in Oncology, 2019, 9, 344.	1.3	20
20	The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell, 2019, 18, e12848.	3.0	161
21	Telomerase Mediates Lymphocyte Proliferation but Not the Atherosclerosis-Suppressive Potential of Regulatory T-Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1283-1296.	1.1	26
22	iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death and Disease, 2018, 9, 128.	2.7	26
23	Dietary Restriction Ameliorates Age-Related Increase in DNA Damage, Senescence and Inflammation in Mouse Adipose Tissuey. Journal of Nutrition, Health and Aging, 2018, 22, 555-561.	1.5	13
24	Telomeres, Telomerase and Ageing. Sub-Cellular Biochemistry, 2018, 90, 221-308.	1.0	71
25	Metabolic memory of dietary restriction ameliorates DNA damage and adipocyte size in mouse visceral adipose tissue. Experimental Gerontology, 2018, 113, 228-236.	1.2	5
26	Human iPSC disease modelling reveals functional and structural defects in retinal pigment epithelial cells harbouring the m.3243A > G mitochondrial DNA mutation. Scientific Reports, 2017, 7, 12320.	1.6	17
27	An Induced Pluripotent Stem Cell Patient Specific Model of Complement Factor H (Y402H) Polymorphism Displays Characteristic Features of Age-Related Macular Degeneration and Indicates a Beneficial Role for UV Light Exposure. Stem Cells, 2017, 35, 2305-2320.	1.4	58
28	Telomerase and mTOR in the brain: the mitochondria connection. Neural Regeneration Research, 2017, 12, 358.	1.6	23
29	Telomerase Activity is Downregulated Early During Human Brain Development. Genes, 2016, 7, 27.	1.0	30
30	Mitochondria are required for proâ€ageing features of the senescent phenotype. EMBO Journal, 2016, 35, 724-742.	3.5	527
31	Inorganic Nitrate Supplementation in Young and Old Obese Adults Does Not Affect Acute Glucose and Insulin Responses but Lowers Oxidative Stress. Journal of Nutrition, 2016, 146, 2224-2232.	1.3	33
32	The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. Journal of Cell Biology, 2016, 215, 187-202.	2.3	41
33	Decreased mTOR signalling reduces mitochondrial ROS in brain via accumulation of the telomerase protein TERT within mitochondria. Aging, 2016, 8, 2551-2567.	1.4	66
34	The Role of Telomerase Protein TERT in Alzheimer's Disease and in Tau-Related Pathology <i>In Vitro</i> . Journal of Neuroscience, 2015, 35, 1659-1674.	1.7	117
35	Dietary restriction mitigates age-related accumulation of DNA damage, but not all changes in mouse corneal epithelium. Experimental Gerontology, 2015, 67, 72-79.	1.2	6
36	Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nature Communications, 2014, 5, 3837.	5.8	164

#	Article	IF	CITATIONS
37	Extra-telomeric Functions of Human Telomerase: Cancer, Mitochondria and Oxidative Stress. Current Pharmaceutical Design, 2014, 20, 6386-6403.	0.9	125
38	Improvement of biological age by physical activity. International Journal of Cardiology, 2014, 176, 1187-1189.	0.8	32
39	Atorvastatin induces T cell proliferation by a telomerase reverse transcriptase (TERT) mediated mechanism. Atherosclerosis, 2014, 236, 312-320.	0.4	42
40	Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype. Experimental Gerontology, 2014, 58, 113-119.	1.2	15
41	Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature Communications, 2014, 5, 4172.	5.8	596
42	Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors. Stem Cells, 2013, 31, 2015-2023.	1.4	15
43	Brief Report: Human Pluripotent Stem Cell Models of Fanconi Anemia Deficiency Reveal an Important Role for Fanconi Anemia Proteins in Cellular Reprogramming and Survival of Hematopoietic Progenitors. Stem Cells, 2013, 31, 1022-1029.	1.4	51
44	Mitochondrial Telomerase Protects Cancer Cells from Nuclear DNA Damage and Apoptosis. PLoS ONE, 2013, 8, e52989.	1.1	145
45	A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations. PLoS ONE, 2012, 7, e32117.	1.1	50
46	Derivation and Functional Analysis of Patient-Specific Induced Pluripotent Stem Cells as an In Vitro Model of Chronic Granulomatous Disease. Stem Cells, 2012, 30, 599-611.	1.4	69
47	The 19S proteasome subunit Rpn7 stabilizes DNA damage foci upon genotoxic insult. IUBMB Life, 2012, 64, 432-442.	1.5	14
48	Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism. Free Radical Biology and Medicine, 2012, 52, 1024-1032.	1.3	102
49	Cellular Senescence in the Development and Treatment of Cancer. Current Pharmaceutical Design, 2010, 16, 79-100.	0.9	77
50	Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells. Stem Cells, 2010, 28, 661-673.	1.4	265
51	The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families. Brain, 2010, 133, 2952-2963.	3.7	69
52	Feedback between p21 and reactive oxygen production is necessary for cell senescence. Molecular Systems Biology, 2010, 6, 347.	3.2	754
53	Well-Known Signaling Proteins Exert New Functions in the Nucleus and Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 551-558.	2.5	6
54	Immediate and gradual gene expression changes in telomerase over-expressing fibroblasts. Biochemical and Biophysical Research Communications, 2010, 399, 7-13.	1.0	8

#	Article	IF	CITATIONS
55	Adult-onset, short-term dietary restriction reduces cell senescence in mice. Aging, 2010, 2, 555-566.	1.4	116
56	Telomerase, mitochondria and oxidative stress. Experimental Gerontology, 2009, 44, 485-492.	1.2	131
57	Downregulation of Multiple Stress Defense Mechanisms During Differentiation of Human Embryonic Stem Cells. Stem Cells, 2008, 26, 455-464.	1.4	240
58	A Key Role for Telomerase Reverse Transcriptase Unit in Modulating Human Embryonic Stem Cell Proliferation, Cell Cycle Dynamics, and In Vitro Differentiation. Stem Cells, 2008, 26, 850-863.	1.4	109
59	Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. Journal of Cell Science, 2008, 121, 1046-1053.	1.2	399
60	Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence. PLoS Biology, 2007, 5, e110.	2.6	612
61	DNA damage in telomeres and mitochondria during cellular senescence: is there a connection?. Nucleic Acids Research, 2007, 35, 7505-7513.	6.5	285
62	Premature senescence of mesothelial cells is associated with non-telomeric DNA damage. Biochemical and Biophysical Research Communications, 2007, 362, 707-711.	1.0	46
63	Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart. Experimental Cell Research, 2007, 313, 1056-1067.	1.2	53
64	TRF2 overexpression diminishes repair of telomeric single-strand breaks and accelerates telomere shortening in human fibroblasts. Mechanisms of Ageing and Development, 2007, 128, 340-345.	2.2	48
65	Mitochondrial Dysfunction and Cell Senescence: Cause or Consequence?. Rejuvenation Research, 2006, 9, 64-68.	0.9	45
66	Mechanisms and role of oxidative damage to telomeres. Toxicology, 2006, 226, 16-17.	2.0	0
67	Tumour-cell apoptosis after cisplat in treatment is not telomere dependent. International Journal of Cancer, 2006, 118, 2727-2734.	2.3	14
68	The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo. EMBO Reports, 2005, 6, 275-281.	2.0	86
69	Telomeres, cell senescence and human ageing. Signal Transduction, 2005, 5, 103-114.	0.7	17
70	Telomeres, Senescence and Longevity: The Role of Oxidative Stress and Antioxidants. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2005, 3, 129-156.	0.3	1
71	Endogenous and ectopic expression of telomere regulating genes in chicken embryonic fibroblasts. Biochemical and Biophysical Research Communications, 2005, 335, 240-246.	1.0	11
72	The Role of Telomeres in Etoposide Induced Tumour Cell Death. Cell Cycle, 2004, 3, 1167-1174.	1.3	15

#	Article	IF	CITATIONS
73	Stochastic Variation in Telomere Shortening Rate Causes Heterogeneity of Human Fibroblast Replicative Life Span. Journal of Biological Chemistry, 2004, 279, 17826-17833.	1.6	124
74	Telomere shortening in human fibroblasts is not dependent on the size of the telomeric-3'-overhang. Aging Cell, 2004, 3, 103-109.	3.0	36
75	Stress Defense in Murine Embryonic Stem Cells Is Superior to That of Various Differentiated Murine Cells. Stem Cells, 2004, 22, 962-971.	1.4	253
76	A role for nucleoprotein Zap3 in the reduction of telomerase activity during embryonic stem cell differentiation. Mechanisms of Development, 2004, 121, 1509-1522.	1.7	20
77	The role of telomeres in Etoposide induced tumor cell death. Cell Cycle, 2004, 3, 1169-76.	1.3	5
78	MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2003, 2, 141-143.	3.0	192
79	A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003, 426, 194-198.	13.7	2,381
80	Immortalisation of human ovarian surface epithelium with telomerase and temperature-senstitive SV40 large T antigen. Experimental Cell Research, 2003, 288, 390-402.	1.2	57
81	Telomerase inhibition as cancer therapy. Cancer Letters, 2003, 194, 209-219.	3.2	110
82	Extracellular Superoxide Dismutase Is a Major Antioxidant in Human Fibroblasts and Slows Telomere Shortening. Journal of Biological Chemistry, 2003, 278, 6824-6830.	1.6	229
83	Telomerase as a promising target for human cancer gene therapy. Drugs of Today, 2003, 39, 265.	2.4	4
84	hTERT gene dosage correlates with telomerase activity in human lung cancer cell lines. Cancer Letters, 2002, 176, 81-91.	3.2	37
85	Replicative Aging, Telomeres, and Oxidative Stress. Annals of the New York Academy of Sciences, 2002, 959, 24-29.	1.8	231
86	Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Therapy, 2001, 8, 827-834.	2.2	101
87	BJ fibroblasts display high antioxidant capacity and slow telomere shortening independent of hTERT transfection. Free Radical Biology and Medicine, 2001, 31, 824-831.	1.3	69
88	Short Telomeres in Patients with Vascular Dementia: An Indicator of Low Antioxidative Capacity and a Possible Risk Factor?. Laboratory Investigation, 2000, 80, 1739-1747.	1.7	290
89	Telomere Length As a Marker of Oxidative Stress in Primary Human Fibroblast Cultures. Annals of the New York Academy of Sciences, 2000, 908, 327-330.	1.8	87
90	Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene, 1999, 18, 5148-5158.	2.6	168

#	Article	IF	CITATIONS
91	Similar Gene Expression Patterns in Senescent and Hyperoxically Blocked Fibroblasts. Annals of the New York Academy of Sciences, 1998, 854, 482-482.	1.8	Ο
92	Preferential Accumulation of Single-Stranded Regions in Telomeres of Human Fibroblasts. Experimental Cell Research, 1998, 239, 152-160.	1.2	380
93	Identification of allelic losses in benign, borderline, and invasive epithelial ovarian tumors and correlation with clinical outcome. , 1997, 80, 1241-1249.		49
94	Mild Hyperoxia Shortens Telomeres and Inhibits Proliferation of Fibroblasts: A Model for Senescence?. Experimental Cell Research, 1995, 220, 186-193.	1.2	781
95	Telomerase and Oxidative Stress in Embryonic Stem Cells. , 0, , .		1