Bidyut Saha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818652/publications.pdf Version: 2024-02-01

ΒΙΟΥΠΤ ΣΛΗΛ

#	Article	IF	CITATIONS
1	Anionic micelles and their ideal binary mixture: Worth media for sustainable oxidation of hydrophobic alcohol. Journal of Molecular Liquids, 2022, 346, 117118.	4.9	13
2	Advancement of Cu(III) and Fe(III) directed oxidative transformations: Recent impact of aqueous micellar environment. Journal of Molecular Liquids, 2022, 347, 117993.	4.9	7
3	Effect of dicationic gemini surfactants on the rate of reaction between ninhydrin and arginine. Chemical Papers, 2022, 76, 2865-2874.	2.2	3
4	A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances, 2022, 12, 9139-9153.	3.6	63
5	Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. Chemistry Africa, 2022, 5, 459-480.	2.4	22
6	A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers, 2022, 14, 127.	4.5	18
7	Catalytic impacts of cationic twin headed and tailed gemini surfactants toward study of glycine and ninhydrin in sodium acetate-acetic acid buffer system. Journal of Molecular Liquids, 2022, 360, 119442.	4.9	9
8	Surfactant as an anti-corrosive agent: a review. Tenside, Surfactants, Detergents, 2022, 59, 363-372.	1.2	3
9	Removal of bromothymol blue dye by the oxidation method using KMnO4: Accelerating the oxidation reaction by Ru (III) catalyst. Journal of Molecular Structure, 2022, 1268, 133679.	3.6	11
10	Micelle catalysed conversion of â€~on water' reactions into â€~in water' one. Journal of Molecular Liquids, 2021, 321, 114897.	4.9	22
11	Biodegradability and biocompatibility: Advancements in synthetic surfactants. Journal of Molecular Liquids, 2021, 324, 115105.	4.9	36
12	Role of dimeric gemini surfactant system on kinetic study of alanine amino acid with ninhydrin reaction. Colloid and Polymer Science, 2021, 299, 1285-1294.	2.1	9
13	Aggregation of Surfactants: Catalytic Reinforcement in Oxidation of Unsaturated E-Crotonaldehyde. Tenside, Surfactants, Detergents, 2021, 58, 293-302.	1.2	0
14	Properties and applications of amphoteric surfactant: A concise review. Journal of Surfactants and Detergents, 2021, 24, 709-730.	2.1	37
15	Analysis of interaction between glutamic acid and ninhydrin in the presence of acetate buffer solvent: Impact of gemini (twin-headed) surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127061.	4.7	15
16	Scientific information about sugar-based emulsifiers: a comprehensive review. RSC Advances, 2021, 11, 33004-33016.	3.6	16
17	Spectroscopic and Conductometric Analyses of Ninhydrin and Threonine Reaction in Double-Headed Geminis. Industrial & Engineering Chemistry Research, 2021, 60, 14977-14984.	3.7	13
18	Surfactant-based therapy against COVID-19: A review. Tenside, Surfactants, Detergents, 2021, 58, 410-415.	1.2	7

#	Article	IF	CITATIONS
19	Potential application of Micellar nanoreactor for electron transfer reactions mediated by a variety of oxidants: A review. Advances in Colloid and Interface Science, 2020, 284, 102241.	14.7	30
20	A Comparative Spectral Study on the Interaction of Organic Dye Congo-Red with Selective Aqueous Micellar Media of CPC, Rhamnolipids and Saponin. Tenside, Surfactants, Detergents, 2020, 57, 401-407.	1.2	17
21	Correlation of the Volumetric Properties of Uni-Univalent Electrolytes in Methanol–Water Mixed Solvent Media: A Pitzer Ion-Interaction Approach. Journal of Solution Chemistry, 2020, 49, 825-835.	1.2	1
22	Hetero-aromatic N-base-promoted oxidation of 4-chlorobenzyl alcohol by Cr(VI) in micellar media. Research on Chemical Intermediates, 2020, 46, 2559-2578.	2.7	11
23	Mixed anionic-nonionic micelle catalysed oxidation of aliphatic alcohol in aqueous medium. Journal of Molecular Liquids, 2020, 303, 112655.	4.9	23
24	Surface phenomenon in micellar media: An excellent controlling factor for oxidation of fatty aldehyde in aqueous medium. Journal of Molecular Liquids, 2020, 310, 113224.	4.9	11
25	Green Methodology Development for the Surfactant Assisted Williamson Synthesis of 4-Benzyloxy Benzoic Acid (Ether) in Aqueous Media. Tenside, Surfactants, Detergents, 2020, 57, 115-121.	1.2	2
26	Micellar and Transition Metal Ion Catalysed Oxidation of Pentanol in Aqueous Medium. Tenside, Surfactants, Detergents, 2020, 57, 506-514.	1.2	3
27	A Comprehensive Report on the Modern Applications of Inorganic Materials in Biofuel Cell Industry. Journal of the Indonesian Chemical Society, 2020, 3, 131.	0.3	0
28	Micellar catalysed oxidation of hydrophobic fatty alcohol in aqueous medium. Journal of Molecular Liquids, 2019, 293, 111475.	4.9	22
29	Surfactant for better tomorrow: applied aspect of surfactant aggregates from laboratory to industry. Research on Chemical Intermediates, 2019, 45, 6021-6041.	2.7	83
30	Novel Amphiphiles and Their Applications for Different Purposes with Special Emphasis on Polymeric Surfactants. ChemistrySelect, 2019, 4, 6978-6995.	1.5	32
31	Ru(III) catalysed oxidation of 2-propanol by Cr(VI) in micellar media. Journal of Molecular Liquids, 2019, 290, 111247.	4.9	27
32	Micellar catalysed and heteroaromatic base promoted rate enhancement of oxidation of an alicyclic alcohol in aqueous medium. Journal of Molecular Liquids, 2019, 277, 360-371.	4.9	28
33	A study on the synthesis of alkaline copper(III)-periodate (DPC) complex with an overview of its redox behavior in aqueous micellar media. Research on Chemical Intermediates, 2019, 45, 789-800.	2.7	12
34	Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media. Tenside, Surfactants, Detergents, 2019, 56, 337-342.	1.2	3
35	A Review on Micellar Catalyzed Oxidation Reactions of Organic Functional Groups in Aqueous Medium Using Various Transition Metals. Tenside, Surfactants, Detergents, 2019, 56, 516-525.	1.2	16
36	Synthesis of 2-(ethynyloxy)naphthaene-1-carbaldehyde using 2-hydroxy benzyl alcohol and propargyl bromide in aqueous micellar media. Research on Chemical Intermediates, 2018, 44, 2169-2177.	2.7	7

#	Article	IF	CITATIONS
37	A Review of the Synthesis and Utility of Some Lipopathic Permanganate Oxidants. Journal of Solution Chemistry, 2018, 47, 1449-1478.	1.2	4
38	Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p-Nitro Benzaldehyde and Acetone in Aqueous Micellar Media using L-Proline. Tenside, Surfactants, Detergents, 2018, 55, 325-330.	1.2	4
39	Microbial assisted (pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies. Journal of Molecular Liquids, 2017, 242, 873-878.	4.9	27
40	Employment of different spectroscopic tools for the investigation of chromium(VI) oxidation of acetaldehyde in aqueous micellar medium. Journal of Chemical Sciences, 2017, 129, 637-645.	1.5	14
41	Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperature. Journal of Molecular Liquids, 2017, 225, 207-216.	4.9	26
42	Surfactant-promoted enhancement in bioremediation of hexavalent chromium to trivalent chromium by naturally occurring wall algae. Research on Chemical Intermediates, 2017, 43, 1619-1634.	2.7	26
43	Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP. Research on Chemical Intermediates, 2017, 43, 1651-1670.	2.7	19
44	Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl. Tenside, Surfactants, Detergents, 2017, 54, 378-384.	1.2	13
45	Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water. Tenside, Surfactants, Detergents, 2017, 54, 519-529.	1.2	45
46	Combination of Sodium Dodecylsulfate and 2,2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium(VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach. Journal of Solution Chemistry, 2016, 45, 1043-1060.	1.2	12
47	Review of the aldol reaction. Synthetic Communications, 2016, 46, 1327-1342.	2.1	66
48	Combined effect of promoter and surfactant on the chromium(VI) oxidation of D-ribose in aqueous media at room temperature. Journal of Carbohydrate Chemistry, 2016, 35, 86-105.	1.1	23
49	Selective heteroaromatic nitrogen base promoted chromium(VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature. Journal of Industrial and Engineering Chemistry, 2016, 42, 53-62.	5.8	36
50	A review on the advancement of ether synthesis from organic solvent to water. RSC Advances, 2016, 6, 69605-69614.	3.6	72
51	Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium. Tenside, Surfactants, Detergents, 2016, 53, 332-346.	1.2	8
52	Optimal Process Condition for Room Temperature Hetero-Aromatic Nitrogen Base Promoted Chromic Acid Oxidation of <i>p</i> -Chlorobenzaldehyde to <i>p</i> -Chlorobenzoic Acid in Aqueous Micellar Medium at Atmospheric Pressure. Tenside, Surfactants, Detergents, 2016, 53, 94-104.	1.2	6
53	Rate enhancement via sodium dodecyl sulfate (SDS) encapsulation of metal-mediated cerium(IV) oxidation of d-mannitol to d-mannose at room temperature and pressure: a kinetic and mechanistic approach. Research on Chemical Intermediates, 2016, 42, 2619-2639.	2.7	28
54	Hetero-aromatic Nitrogen Base Promoted Cr(VI) Oxidation of Butanal in Aqueous Micellar Medium at Room Temperature and Atmospheric Pressure. Journal of Solution Chemistry, 2016, 45, 109-125.	1.2	13

#	Article	IF	CITATIONS
55	Review on chemically bonded geminis with cationic heads: second-generation interfactants. Research on Chemical Intermediates, 2016, 42, 1913-1928.	2.7	43
56	Best Combination of Promoter and Micellar Catalyst for Room Temperature Rapid Conversion of D-Lyxose to D-Lyxonic Acid in Aqueous Medium. Tenside, Surfactants, Detergents, 2015, 52, 302-310.	1.2	5
57	Surfactant Assistant Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Algae. Biochemistry & Physiology, 2015, 04, .	0.2	2
58	Surfactant-assisted enhancement of bioremediation rate for hexavalent chromium by water extract of Sajina (Moringa oleifera) flower. Desalination and Water Treatment, 2015, 54, 525-532.	1.0	16
59	Sodium dodecylsulphate-catalyzed hetero-aromatic nitrogen base-promoted chromium(VI) oxidation of 2-propenol to 2-propenal in aqueous media. Research on Chemical Intermediates, 2015, 41, 10151-10168.	2.7	10
60	Room Temperature Micellar Catalysis on Permanganate Oxidation of Butanol to Butanal in Aqueous Medium at Atmospheric Pressure. Tenside, Surfactants, Detergents, 2015, 52, 36-40.	1.2	12
61	A review on toxic cadmium biosorption from contaminated wastewater. Desalination and Water Treatment, 2015, 53, 413-420.	1.0	35
62	Suitable combination of promoter and micellar catalyst for chromic acid oxidation of formaldehyde to formic acid in aqueous acid media at room temperature. Physics and Chemistry of Liquids, 2015, 53, 146-161.	1.2	15
63	Combination of the most efficient promoter and micellar catalyst for rate enhancement of chromic acid oxidation on 2-butanol to 2-butanone conversion in aqueous media at room temperature. Research on Chemical Intermediates, 2015, 41, 8527-8544.	2.7	6
64	The influence of SDS micelle on the oxidative transformation of propanol to propionaldehyde by quinquivalent vanadium in aqueous medium at room temperature. Research on Chemical Intermediates, 2015, 41, 7775-7784.	2.7	18
65	A review on natural surfactants. RSC Advances, 2015, 5, 65757-65767.	3.6	281
66	Role of surfactants on metal mediated cerium(IV) oxidation of valeraldehyde at room temperature and pressure. Journal of Molecular Liquids, 2015, 211, 48-62.	4.9	27
67	Surfactant-assisted bioremediation of hexavalent chromium from contaminated water. Desalination and Water Treatment, 2015, 53, 746-751.	1.0	19
68	Modernization of surfactant chemistry in the age of gemini and bio-surfactants: a review. RSC Advances, 2015, 5, 92707-92718.	3.6	80
69	Choice of suitable micellar catalyst for 2,2′-bipyridine-promoted chromic acid oxidation of glycerol to glyceraldehyde in aqueous media at room temperature. Research on Chemical Intermediates, 2015, 41, 3057-3078.	2.7	15
70	Toxicity of inorganic vanadium compounds. Research on Chemical Intermediates, 2015, 41, 4873-4897.	2.7	74
71	Micellar effect on pentavalent vanadium oxidation of formaldehyde to formic acid in aqueous acid media at room temperature. Research on Chemical Intermediates, 2015, 41, 5331-5352.	2.7	14
72	Micellar catalysis of quinquivalent vanadium oxidation of methanol to formaldehyde in aqueous medium. Research on Chemical Intermediates, 2015, 41, 5565-5586.	2.7	17

#	Article	IF	CITATIONS
73	Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Arabinose in Aqueous Media at Room Temperature. Tenside, Surfactants, Detergents, 2015, 52, 502-511.	1.2	6
74	Combination of Best Promoter and Micellar Catalyst for Cr(VI) Oxidation of Lactose to Lactobionic Acid in Aqueous Medium at Room Temperature. Tenside, Surfactants, Detergents, 2014, 51, 325-332.	1.2	12
75	A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Research on Chemical Intermediates, 2014, 40, 447-485.	2.7	189
76	Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous media. Journal of Industrial and Engineering Chemistry, 2014, 20, 345-355.	5.8	47
77	Surfactant-assisted bioremediation of hexavalent chromium by use of an aqueous extract of sugarcane bagasse. Research on Chemical Intermediates, 2014, 40, 1727-1734.	2.7	37
78	Best combination of promoter and micellar catalyst for the rapid conversion of sorbitol to glucose. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 204-208.	3.9	21
79	Effect of CPC micelle on N-hetero-aromatic base promoted room temperature permanganate oxidation of 2-butanol in aqueous medium. Journal of Molecular Liquids, 2014, 198, 369-380.	4.9	25
80	Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (<i>Mangifera indica</i>). Desalination and Water Treatment, 2014, 52, 1928-1936.	1.0	54
81	Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 130-137.	3.9	15
82	Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of p-chlorobenzaldehyde to p-chlorobenzoic acid in aqueous medium at atmospheric pressure. Journal of Molecular Liquids, 2014, 190, 81-93.	4.9	25
83	Effect of CHAPS and CPC micelles on Ir(III) catalyzed Ce(IV) oxidation of aliphatic alcohols at room temperature and pressure. Journal of Molecular Liquids, 2014, 196, 223-237.	4.9	31
84	Surfactant Assisted Enhancement of Bioremediation Rate for Hexavalent Chromium by Water Extract of Siris (<i>Albizia lebbeck</i>) Sawdust. Tenside, Surfactants, Detergents, 2014, 51, 521-527.	1.2	6
85	Application of Chattim tree (devil tree, <i>Alstonia scholaris</i>) saw dust as a biosorbent for removal of hexavalent chromium from contaminated water. Canadian Journal of Chemical Engineering, 2013, 91, 814-821.	1.7	36
86	A review of biphasic hydroformylation for long chain substrates. Research on Chemical Intermediates, 2013, 39, 3463-3474.	2.7	30
87	Chromium removal technologies. Research on Chemical Intermediates, 2013, 39, 2267-2286.	2.7	61
88	Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: A kinetic approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 109, 55-67.	3.9	34
89	Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of d-galactose to d-galactonic acid in aqueous media at room temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 116, 524-531.	3.9	40
90	Choice of a suitable hetero-aromatic nitrogen base as promoter for chromic acid oxidation of dl-mandelic acid in aqueous media at room temperature. Research on Chemical Intermediates, 2013, 39, 631-643.	2.7	26

#	Article	IF	CITATIONS
91	Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room Temperature. International Journal of Chemical Kinetics, 2013, 45, 175-186.	1.6	29
92	Rate enhancement via micelle encapsulation for room temperature metal catalyzed Ce(IV) oxidation of formaldehyde to formic acid in aqueous medium at atmospheric pressure: A kinetic approach. Journal of Molecular Liquids, 2013, 186, 122-130.	4.9	28
93	Combination of best promoter and catalyst for hypervalent chromium oxidation of l-sorbose to lactone of C5 aldonic acid in aqueous media at room temperature. Journal of Molecular Liquids, 2013, 179, 1-6.	4.9	25
94	Kinetics of micellar catalysis on oxidation of p-anisaldehyde to p-anisic acid in aqueous medium at room temperature. Chemical Engineering Science, 2013, 99, 23-27.	3.8	45
95	Sources and toxicity of fluoride in the environment. Research on Chemical Intermediates, 2013, 39, 2881-2915.	2.7	157
96	Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Research on Chemical Intermediates, 2013, 39, 2245-2257.	2.7	93
97	Efficient combination of promoter and catalyst for chromic acid oxidation of propan-2-ol to acetone in aqueous acid media at room temperature. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 101, 294-305.	3.9	32
98	Combination of Best Promoter and Micellar Catalyst for Chromic Acid Oxidation of D-Mannitol to Mannose in Aqueous Media. Tenside, Surfactants, Detergents, 2013, 50, 249-258.	1.2	10
99	Micellar Catalysis of Chromic Acid Oxidation of Methionine to Industrially Important Methylthiol in Aqueous Media at Room Temperature. Tenside, Surfactants, Detergents, 2013, 50, 94-98.	1.2	8
100	Selection of Promoter and Micellar Catalyst for Chromic Acid Oxidation of Tartaric Acid in Aqueous Medium at Room Temperature. Tenside, Surfactants, Detergents, 2013, 50, 441-445.	1.2	7
101	Rate Enhancement by Micelle Encapsulation for Oxidation of L-Glutamic Acid in Aqueous Media at Room Temperature. Journal of the Korean Chemical Society, 2013, 57, 425-431.	0.2	6
102	Selection of Suitable Micellar Catalyst for 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Formic Acid in Aqueous Media at Room Temperature. Journal of the Korean Chemical Society, 2013, 57, 703-711.	0.2	2
103	Micellar Catalysis of the 1,10-Phenanthroline-Promoted Chromic Acid Oxidation of Propan-2-ol in Aqueous Media. Journal of Chemical Research, 2012, 36, 347-350.	1.3	11
104	Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol. Journal of Coordination Chemistry, 2012, 65, 1158-1177.	2.2	33
105	Micellar Catalysis on Pentavalent Vanadium Ion Oxidation of Ethanol in Aqueous Acid Media. Tenside, Surfactants, Detergents, 2012, 49, 296-299.	1.2	11
106	Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Glycerol in Aqueous Media. Tenside, Surfactants, Detergents, 2012, 49, 370-375.	1.2	21
107	Kinetics and Mechanism of 2, 2- Bipyridyl Catalyzed Chromium(VI) Oxidation of Formic Acid in the Presence and Absence of Surfactants. Current Inorganic Chemistry, 2012, 2, 86-91.	0.2	5
108	Kinetic Studies of Glutamic Acid Oxidation by Hexavalent Chromium in Presence of Surfactants. Tenside, Surfactants, Detergents, 2012, 49, 481-487.	1.2	12

#	Article	IF	CITATIONS
109	Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Propanol in Aqueous Media. Journal of the Korean Chemical Society, 2012, 56, 164-168.	0.2	17
110	Micellar Catalysis on 1,10-Phenanthroline Promoted Chromic Acid Oxidation of Ethane-1,2-diol in Aqueous Media at Room Temperature. Journal of the Korean Chemical Society, 2012, 56, 720-724.	0.2	11
111	Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 2011, 64, 1782-1806.	2.2	593
112	Micellar catalysis on 1,10-phenanthroline promoted hexavalent chromium oxidation of ethanol. Journal of Coordination Chemistry, 2011, 64, 3729-3739.	2.2	45
113	Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 2010, 254, 2959-2972.	18.8	474
114	Kinetics and mechanism of 2,2′-bipyridine-catalyzed chromium(VI) oxidation of propan-2-ol in the presence and absence of surfactants. Journal of Coordination Chemistry, 2010, 63, 99-105.	2.2	30
115	Kinetic Studies on Hexavalent Chromium Reduction. American Journal of Analytical Chemistry, 2010, 01, 25-30.	0.9	17
116	Removal of hexavalent chromium by an aromatic alcohol. Journal of Biomedical Science and Engineering, 2010, 03, 735-741.	0.4	13
117	Micelle catalyzed oxidation of propan-2-ol to acetone by penta-valent vanadium in aqueous acid media. Molecular Physics, 2009, 107, 615-619.	1.7	23
118	Micellar catalysis of chromium(VI) oxidation of ethane-1,2-diol in the presence and absence of 2,2′-bipyridine in aqueous acid media. Journal of Coordination Chemistry, 2009, 62, 1871-1878.	2.2	22
119	Micellar Catalysis on Pentavalent Vanadium Ion Oxidation of D-Sorbitol in Aqueous Acid Media: AÂKinetic Study. Journal of Solution Chemistry, 2008, 37, 1321-1328.	1.2	21
120	Micellar effect on quinquivalent vanadium ion oxidation of <scp>D</scp> â€glucose in aqueous acid media: A kinetic study. International Journal of Chemical Kinetics, 2008, 40, 282-286.	1.6	20
121	Micellar Effects on Vanadium(V) Oxidation of Lactic Acid in Aqueous Acid Media: A Kinetic Study. Bioinorganic Reaction Mechanisms, 2008, 6, .	0.4	0
122	Kinetics and Mechanism of 2,2'-Bipyridyl Promoted Chromic Acid Oxidation of Ethanol and Propan-1-ol in Aqueous Micellar Media~!2008-08-15~!2008-09-26~!2008-11-14~!. Open Catalysis Journal, 2008, 1, 1-5.	0.9	5
123	Kinetics and mechanism of picolinic acid promoted chromic acid oxidation of maleic acid in aqueous micellar media. Journal of Molecular Catalysis A, 2007, 266, 21-30.	4.8	40
124	Chromic acid oxidation of hexitols in the presence of 2,2′-bipyridyl catalyst in aqueous micellar media: A kinetic study. International Journal of Chemical Kinetics, 2006, 38, 531-539.	1.6	14
125	Micellar Effects on the Reactions of Chromium(VI) Oxidation of Lactic Acid and Malic Acid in the Presence and Absence of Picolinic Acid in Aqueous Acid Media. Bioinorganic Reaction Mechanisms, 2006, 6, .	0.4	3
126	Kinetics and Mechanism of 2,2′-bipyridine Catalysed Chromium(VI) Oxidation of Dimethyl Sulfoxide in the Presence and Absence of Surfactantsâ€. Journal of Chemical Research, 2005, 2005, 471-474.	1.3	10

#	Article	IF	CITATIONS
127	Kinetics and mechanism of 2,2′-bipyridyl and 1,10-phenanthroline-catalysed chromium(VI) oxidation of d-fructose in aqueous micellar media. Journal of Molecular Catalysis A, 2005, 236, 260-266.	4.8	41
128	Oxidation of d-glucose in the presence of 2,2′-bipyridine by CrVI in aqueous micellar media: a kinetic study. Carbohydrate Research, 2005, 340, 2163-2170.	2.3	37
129	Kinetics and Mechanism of 1,10-Phenanthroline Catalysed Chromium(VI) Oxidation of D-Glucose in Aqueous Micellar Media. Progress in Reaction Kinetics and Mechanism, 2005, 30, 283-291.	2.1	5
130	Micellar Effect on the Catalytic Co-Oxidation of Dimethyl Sulfoxide and Oxalic Acid by Chromium(VI) in Aqueous Acid Media: A Kinetic Study. Progress in Reaction Kinetics and Mechanism, 2005, 30, 215-226.	2.1	4
131	Micellar Effect on the Reaction of Chromium(VI) Oxidation of Lâ€Sorbose in the Presence and Absence of Picolinic Acid in Aqueous Acid Media: A Kinetic Study. Journal of the Chinese Chemical Society, 2004, 51, 399-408.	1.4	29
132	Micellar effects on the reaction of Cr(VI) oxidation of hexitols in the presence and absence of picolinic acid in aqueous acid media Journal of Chemical Research, 2003, 2003, 658-661.	1.3	20
133	Cooxidation of Formic Acid and Oxalic Acid by Chromium(VI) in Aqueous Acid Media: A Kinetic Study. Journal of Chemical Research, 2001, 2001, 334-335.	1.3	8
134	Micellar effect on the reaction of chromium(VI) oxidation ofD-fructose in the presence and absence of picolinic acid in aqueous media: a kinetic study. Journal of Physical Organic Chemistry, 2001, 14, 333-342.	1.9	33
135	Title is missing!. Transition Metal Chemistry, 2001, 26, 630-637.	1.4	27
136	Reliable bioremediation of hexavalent chromium from wastewater using mango leaves as reductant in association with the neutral and anionic micellar aggregation as redox accelarators. Desalination and Water Treatment, 0, , 1-8.	1.0	5