
Michel Hoen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8186269/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theta activity and phase resetting during perception of French homophonous utterances. Language, Cognition and Neuroscience, 2022, 37, 154-164.	1.2	2
2	The Development of the "Telislife―Questionnaire for the Evaluation of Telephone Use in Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2021, 64, 186-195.	1.6	0
3	Adult Users of the Oticon Medical Neuro Cochlear Implant System Benefit from Beamforming in the High Frequencies. Audiology Research, 2021, 11, 179-191.	1.8	1
4	Clinical implications of intraoperative eABRs to the Evo®-CI electrode array recipients. Brazilian Journal of Otorhinolaryngology, 2021, , .	1.0	0
5	One Year Assessment of the Hearing Preservation Potential of the EVO Electrode Array. Journal of Clinical Medicine, 2021, 10, 5604.	2.4	0
6	The Oticon Medical Neuro Zti cochlear implant and the Neuro 2 sound processor: multicentric evaluation of outcomes in adults and children. International Journal of Audiology, 2020, 59, 153-160.	1.7	5
7	Prospective Multicentric Follow-up Study of Cochlear Implantation in Adults With Single-Sided Deafness: Tinnitus and Audiological Outcomes. Otology and Neurotology, 2020, 41, 458-466.	1.3	33
8	Pupillometry Assessment of Speech Recognition and Listening Experience in Adult Cochlear Implant Patients. Frontiers in Neuroscience, 2020, 14, 556675.	2.8	7
9	Clinical efficiency and safety of the oticon medical neuro cochlear implant system: a multicenter prospective longitudinal study. Expert Review of Medical Devices, 2020, 17, 959-967.	2.8	6
10	Processing of non-contrastive subphonemic features in French homophonous utterances: An MMN study. Journal of Neurolinguistics, 2019, 52, 100849.	1.1	4
11	Method to quantitatively assess electrode migration from medical images: Feasibility and application in patients with straight cochlear implant arrays. Cochlear Implants International, 2019, 20, 237-241.	1.2	3
12	Cognitive Abilities and Quality of Life After Cochlear Implantation in the Elderly. Otology and Neurotology, 2017, 38, e296-e301.	1.3	68
13	A Cochlear Implant Performance Prognostic Test Based on Electrical Field Interactions Evaluated by eABR (Electrical Auditory Brainstem Responses). PLoS ONE, 2016, 11, e0155008.	2.5	10
14	Direct Viewing of Dyslexics' Compensatory Strategies in Speech in Noise Using Auditory Classification Images. PLoS ONE, 2016, 11, e0153781.	2.5	11
15	The Voice Track multiband single-channel modified Wiener-filter noise reduction system for cochlear implants: patients' outcomes and subjective appraisal. International Journal of Audiology, 2016, 55, 431-438.	1.7	13
16	Residual Hearing Preservation with the Evo® Cochlear Implant Electrode Array: Preliminary Results. International Archives of Otorhinolaryngology, 2016, 20, 353-358.	0.8	15
17	Clinical evaluation of the xDP output compression strategy for cochlear implants. European Archives of Oto-Rhino-Laryngology, 2016, 273, 2363-2371.	1.6	12
18	How musical expertise shapes speech perception: evidence from auditory classification images. Scientific Reports, 2015, 5, 14489.	3.3	20

MICHEL HOEN

#	Article	IF	CITATIONS
19	Influence of Ionizing Radiation on Two Generations of Cochlear Implants. BioMed Research International, 2015, 2015, 1-7.	1.9	3
20	One-Year Follow up of Auditory Performance in Post-Lingually Deafened Adults Implanted with the Neurelec Digisonic® Sp/saphyr® Neo Cochlear Implant System. Audiology Research, 2015, 5, 76-79.	1.8	5
21	Lexical decision task on French target words: Effect of listeners' knowledge of the babble-language. Speech Communication, 2015, 69, 9-16.	2.8	0
22	A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images. PLoS ONE, 2015, 10, e0118009.	2.5	10
23	Multi-talker background and semantic priming effect. Frontiers in Human Neuroscience, 2014, 8, 878.	2.0	7
24	Functional correlates of the speech-in-noise perception impairment in dyslexia: An MRI study. Neuropsychologia, 2014, 60, 103-114.	1.6	18
25	Gray and White Matter Distribution in Dyslexia: A VBM Study of Superior Temporal Gyrus Asymmetry. PLoS ONE, 2013, 8, e76823.	2.5	22
26	Using auditory classification images for the identification of fine acoustic cues used in speech perception. Frontiers in Human Neuroscience, 2013, 7, 865.	2.0	22
27	Let's All Speak Together! Exploring the Masking Effects of Various Languages on Spoken Word Identification in Multi-Linguistic Babble. PLoS ONE, 2013, 8, e65668.	2.5	6
28	Speech-in-noise perception deficit in adults with dyslexia: Effects of background type and listening configuration. Neuropsychologia, 2012, 50, 1543-1552.	1.6	62
29	Interplay between acoustic/phonetic and semantic processes during spoken sentence comprehension: An ERP study. Brain and Language, 2011, 116, 51-63.	1.6	28
30	A cognitive neuroscience perspective on embodied language for human–robot cooperation. Brain and Language, 2010, 112, 180-188.	1.6	23
31	Real-time lexical competitions during speech-in-speech comprehension. Speech Communication, 2010, 52, 246-253.	2.8	23
32	Linking language with embodied and teleological representations of action for humanoid cognition. Frontiers in Neurorobotics, 2010, 4, 8.	2.8	26
33	Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing. Brain and Language, 2009, 109, 80-92.	1.6	59
34	Speech Restoration: An Interactive Process. Journal of Speech, Language, and Hearing Research, 2009, 52, 827-838.	1.6	15
35	A hybrid propositional-embodied cognitive architecture for human-robot cooperation. , 2008, , .		0
36	Do you agree? Electrophysiological characterization of online agreement checking during the comprehension of correct French passive sentences. Journal of Neurolinguistics, 2007, 20, 395-421.	1.1	4

MICHEL HOEN

#	Article	IF	CITATIONS
37	Phonetic and lexical interferences in informational masking during speech-in-speech comprehension. Speech Communication, 2007, 49, 905-916.	2.8	74
38	Structure Mapping And Semantic Integration in a Construction-Based Neurolinguistic Model of Sentence Processing. Cortex, 2006, 42, 476-479.	2.4	38
39	When Broca Experiences the Janus Syndrome: an ER-FMRI Study Comparing Sentence Comprehension and Cognitive Sequence Processing. Cortex, 2006, 42, 605-623.	2.4	52
40	A Neurolinguistic Model of Grammatical Construction Processing. Journal of Cognitive Neuroscience, 2006, 18, 2088-2107.	2.3	69
41	ERP correlates of lexical analysis: N280 reflects processing complexity rather than category or frequency effects. NeuroReport, 2005, 16, 1435-1438.	1.2	7
42	Neurological basis of language and sequential cognition: Evidence from simulation, aphasia, and ERP studies. Brain and Language, 2003, 86, 207-225.	1.6	170
43	Training with cognitive sequences improves syntactic comprehension in agrammatic aphasics. NeuroReport, 2003, 14, 495-499.	1.2	39
44	ERP analysis of cognitive sequencing. NeuroReport, 2000, 11, 3187-3191.	1.2	95
45	Effect of contralateral noise on energetic and informational masking on speech-in-speech intelligibility. , 0, , .		0
46	Effect of spatial separation on speech-in-noise comprehension in dyslexic adults. , 0, , .		0
47	Speech Reductions Cause a De-Weighting of Secondary Acoustic Cues. , 0, , .		0