
Triantafyllos Roukas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8185935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From food industry wastes to second generation bioethanol: a review. Reviews in Environmental Science and Biotechnology, 2022, 21, 299-329.	8.1	19
2	Rotary biofilm reactor: A new tool for long-term bioethanol production from non-sterilized beet molasses by Saccharomyces cerevisiae in repeated-batch fermentation. Journal of Cleaner Production, 2020, 257, 120519.	9.3	20
3	Pomegranate peel waste: a new substrate for citric acid production by Aspergillus niger in solid-state fermentation under non-aseptic conditions. Environmental Science and Pollution Research, 2020, 27, 13105-13113.	5.3	45
4	Modified rotary biofilm reactor: A new tool for enhanced carotene productivity by Blakeslea trispora. Journal of Cleaner Production, 2018, 174, 1114-1121.	9.3	11
5	Carotene production from waste cooking oil by <i>Blakeslea trispora</i> in a bubble column reactor: The role of oxidative stress. Engineering in Life Sciences, 2017, 17, 775-780.	3.6	10
6	The role of oxidative stress on carotene production by <i>Blakeslea trispora</i> in submerged fermentation. Critical Reviews in Biotechnology, 2016, 36, 1-10.	9.0	19
7	Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology, 2016, 203, 198-203.	9.6	62
8	From Cheese Whey to Carotenes by Blakeslea trispora in a Bubble Column Reactor. Applied Biochemistry and Biotechnology, 2015, 175, 182-193.	2.9	29
9	Oxidative Stress Response of Blakeslea trispora Induced by Iron Ions During Carotene Production in Shake Flask Culture. Applied Biochemistry and Biotechnology, 2013, 169, 2281-2289.	2.9	15
10	Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food and Bioproducts Processing, 2013, 91, 413-420.	3.6	35
11	Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochemical Engineering Journal, 2012, 67, 203-207.	3.6	37
12	Application of Response Surface Methodology to Improve Carotene Production from Synthetic Medium by Blakeslea trispora in Submerged Fermentation. Food and Bioprocess Technology, 2012, 5, 1189-1196.	4.7	18
13	Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresource Technology, 2011, 102, 8159-8164.	9.6	35
14	A new medium for spore production of Blakeslea trispora using response surface methodology. World Journal of Microbiology and Biotechnology, 2011, 27, 307-317.	3.6	7
15	Oxidative stress and morphological changes in Blakeslea trispora induced by enhanced aeration during carotene production in a bubble column reactor. Biochemical Engineering Journal, 2011, 54, 172-177.	3.6	27
16	AUTOLYSIS OFBlakeslea trisporaDURING CAROTENE PRODUCTION FROM CHEESE WHEY IN AN AIRLIFT REACTOR. Preparative Biochemistry and Biotechnology, 2010, 41, 7-21.	1.9	16
17	Oxidative Stress Response and Morphological Changes of Blakeslea trispora Induced by Butylated Hydroxytoluene During Carotene Production. Applied Biochemistry and Biotechnology, 2010, 160, 2415-2423.	2.9	34
18	Effect of the ratio of (+) and (â~') mating type of Blakeslea trispora on carotene production from cheese whey in submerged fermentation. World Journal of Microbiology and Biotechnology, 2010, 26, 2151-2156.	3.6	17

#	Article	IF	CITATIONS
19	Effect of Non-Ionic Surfactants and Beta-Ionone on the Morphology of <i>Blakeslea trispora </i> and Carotenoids Production from Cheese Whey in Submerged Aerobic Growth: A Statistical Approach. Food Biotechnology, 2010, 24, 197-214.	1.5	12
20	IDENTIFICATION OF CAROTENOIDS PRODUCED FROM CHEESE WHEY BYBLAKESLEA TRISPORAIN SUBMERGED FERMENTATION. Preparative Biochemistry and Biotechnology, 2009, 40, 76-82.	1.9	21
21	Effect of Biomass Pre-Treatment and Solvent Extraction on \hat{I}^2 -Carotene and Lycopene Recovery fromBlakeslea trisporaCells. Preparative Biochemistry and Biotechnology, 2008, 38, 246-256.	1.9	22
22	Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during β-carotene production in submerged fermentation. Applied Microbiology and Biotechnology, 2007, 74, 447-453.	3.6	23
23	Performance of Crude Olive Pomace Oil and Soybean Oil during Carotenoid Production byBlakeslea trisporain Submerged Fermentation. Journal of Agricultural and Food Chemistry, 2006, 54, 2575-2581.	5.2	40
24	Effect of oxygen transfer rate on β-carotene production from synthetic medium by Blakeslea trispora in shake flask culture. Enzyme and Microbial Technology, 2005, 37, 687-694.	3.2	31
25	Production of β-Carotene From Beet Molasses by Blakeslea trispora in Stirred-Tank and Bubble Column Reactors: Development of a Mathematical Modeling. Applied Biochemistry and Biotechnology, 2004, 112, 37-54.	2.9	27
26	Production of Beta-Carotene from Synthetic Medium byBlakeslea trisporain Fed-batch Culture. Food Biotechnology, 2004, 18, 343-361.	1.5	17
27	Production of Beta-Carotene from Synthetic Medium by Blakeslea trispora in Fed-batch Culture. Food Biotechnology, 2004, 18, 343-361.	1.5	0
28	Production of β-Carotene from Beet Molasses and Deproteinized Whey byBlakeslea trispora. Food Biotechnology, 2003, 17, 203-215.	1.5	14
29	OPTIMIZATION OF Î ² -CAROTENE PRODUCTION FROM SYNTHETIC MEDIUM BY BLAKESLEA TRISPORA IN A STIRRED TANK REACTOR AND RELATIONSHIP BETWEEN MORPHOLOGICAL CHANGES AND PIGMENT FORMATION. Food Biotechnology, 2002, 16, 167-187.	1.5	15
30	OPTIMIZATION STUDY FOR THE PRODUCTION OF CITRIC AND GLUCONIC ACID FROM FIG WATER EXTRACT BYASPERGILLUS NIGERIN SURFACE FERMENTATION. Food Biotechnology, 2002, 16, 17-28.	1.5	4
31	Optimization of the production of ?-carotene from molasses byBlakeslea trispora: a statistical approach. Journal of Chemical Technology and Biotechnology, 2002, 77, 933-943.	3.2	42
32	Effect of the aeration rate and agitation speed on β-carotene production and morphology of Blakeslea trispora in a stirred tank reactor: mathematical modeling. Biochemical Engineering Journal, 2002, 10, 123-135.	3.6	97
33	Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology, 2002, 31, 122-132.	3.2	100
34	Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology, 2002, 18, 441-448.	3.6	134
35	Optimization of β-Carotene Production from Synthetic Medium by Blakeslea trispora: A Mathematical Modeling. Applied Biochemistry and Biotechnology, 2002, 101, 153-176.	2.9	35
36	Production and Characterization of Pullulan from Beet Molasses Using a Nonpigmented Strain of Aureobasidium pullulans in Batch Culture. Applied Biochemistry and Biotechnology, 2002, 97, 01-22.	2.9	53

TRIANTAFYLLOS ROUKAS

#	Article	IF	CITATIONS
37	Effect of the aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. Journal of Chemical Technology and Biotechnology, 2001, 76, 371-376.	3.2	46
38	An Improved Method for Extraction of β-Carotene from Blakeslea trispora. Applied Biochemistry and Biotechnology, 2001, 90, 37-46.	2.9	35
39	Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. Journal of Industrial Microbiology and Biotechnology, 2000, 25, 298-304.	3.0	81
40	Citric acid production from carob pod by solid-state fermentation. Enzyme and Microbial Technology, 1999, 24, 54-59.	3.2	68
41	Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. Journal of Food Engineering, 1999, 40, 89-94.	5.2	37
42	Pullulan production from deproteinized whey by Aureobasidium pullulans. Journal of Industrial Microbiology and Biotechnology, 1999, 22, 617-621.	3.0	32
43	Pullulan production from brewery wastes by Aureobasidium pullulans. World Journal of Microbiology and Biotechnology, 1999, 15, 447-450.	3.6	52
44	Effect of the Shear Rate on Pullulan Production from Beet Molasses by Aureobasidium pullulans in an Airlift Reactor. Applied Biochemistry and Biotechnology, 1999, 80, 77-90.	2.9	16
45	Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochemistry, 1999, 34, 355-366.	3.7	61
46	Rheological properties of pullulan fermentation broth in a stirred tank fermentor. Food Biotechnology, 1999, 13, 255-266.	1.5	3
47	Pretreatment of beet molasses to increase pullulan production. Process Biochemistry, 1998, 33, 805-810.	3.7	106
48	Enhancement of pullulan production by aureobasidium pullulans in batch culture using olive oil and sucrose as carbon sources. Applied Biochemistry and Biotechnology, 1998, 74, 13-30.	2.9	35
49	Carob pod: A new substrate for citric acid production by Aspergillus niger. Applied Biochemistry and Biotechnology, 1998, 74, 43-53.	2.9	20
50	Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture. Enzyme and Microbial Technology, 1998, 22, 199-204.	3.2	79
51	Citric acid production from carob pod extract by cell recycle ofAspergillus nigeratcc 9142. Food Biotechnology, 1998, 12, 91-104.	1.5	17
52	Pretreatment of date syrup to increase citric acid production. Enzyme and Microbial Technology, 1997, 21, 273-276.	3.2	61
53	Continuous ethanol production from nonsterilized carob pod extract by immobilizedSaccharomyces cerevisiae on mineral kissiris using a two-reactor system. Applied Biochemistry and Biotechnology, 1996, 59, 299-307.	2.9	20
54	Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Journal of Food Engineering, 1996, 27, 87-96.	5.2	67

TRIANTAFYLLOS ROUKAS

#	Article	IF	CITATIONS
55	Continuous production of lactic acid from deproteinized whey by coimmobilizedlactobacillus caseiandlactococcus lactiscells in a packedâ€bed reactor. Food Biotechnology, 1996, 10, 231-242.	1.5	29
56	Evaluation of carob pod as a substrate for pullulan production byAureobasidium pullulans. Applied Biochemistry and Biotechnology, 1995, 55, 27-44.	2.9	89
57	Ethanol production from carob pod extract by immobilizedsaccharomyces cerevisiaecells on the mineral kissiris. Food Biotechnology, 1995, 9, 175-188.	1.5	15
58	Ethanol production from nonsterilized carob pod extract by free and immobilizedSaccharomyces cerevisiae cells using fed-batch culture. Biotechnology and Bioengineering, 1994, 43, 189-194.	3.3	37
59	Kinetics of ethanol production from carob pods extract by immobilizedSaccharomyces cerevisiae cells. Applied Biochemistry and Biotechnology, 1994, 44, 49-64.	2.9	21
60	Continuous ethanol production from carob pod extract by immobilizedSaccharomyces cerevisiae in a packed-bed reactor. Journal of Chemical Technology and Biotechnology, 1994, 59, 387-393.	3.2	28
61	Ethanol production from carob pods bySaccharomyces cerevisiae. Food Biotechnology, 1993, 7, 159-176.	1.5	26
62	Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme and Microbial Technology, 1991, 13, 33-38.	3.2	42
63	Production of Citric Acid from Beet Molasses by Immobilized Cells of Aspergillus niger. Journal of Food Science, 1991, 56, 878-880.	3.1	17
64	Ethanol production from deproteinized whey byl²-galactosidase coimmobilized cells ofSaccharomyces cerevisiae. Journal of Industrial Microbiology, 1991, 7, 15-18.	0.9	16
65	Citric acid production from beet molasses by cell recycle ofAspergillus niger. Journal of Industrial Microbiology, 1991, 7, 71-73.	0.9	13
66	Influence of impeller speed on citric acid production and selected enzyme activities of the TCA cycle. Journal of Industrial Microbiology, 1991, 7, 221-225.	0.9	11
67	The effect of pH on production of citric and gluconic acid from beet molasses using continuous culture. Biotechnology Letters, 1988, 10, 289-294.	2.2	43
68	Influence of some trace metals and stimulants on citric acid production from brewery wastes by Aspergillus niger. Enzyme and Microbial Technology, 1987, 9, 291-294.	3.2	34
69	Fermentation Characteristics of Lactobacilli in Okra (Hibiscus esculentus) Juice. Journal of Food Science, 1987, 52, 487-488.	3.1	2
70	Production of Citric Acid from Brewery Wastes by Surface Fermentation Using Aspergillus niger. Journal of Food Science, 1986, 51, 225-228.	3.1	33
71	Characterization and Distribution of Lactobacilli during Lactic Fermentation of Okra (Hibiscus) Tj ETQq1 1 0.78	431 <u>4 r</u> gBT	/Overlock 1