
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8185480/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitophagy in Alzheimer's disease: Molecular defects and therapeutic approaches. Molecular Psychiatry, 2023, 28, 202-216.	4.1	48
2	Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regeneration Research, 2022, Publish Ahead of Print, 2215-2217.	1.6	3
3	Parkin as a Molecular Bridge Linking Alzheimer's and Parkinson's Diseases?. Biomolecules, 2022, 12, 559.	1.8	3
4	Alzheimer's genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Molecular Psychiatry, 2021, 26, 5592-5607.	4.1	28
5	Accumulation ofÂamyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer's disease models and human brains. Acta Neuropathologica, 2021, 141, 39-65.	3.9	114
6	ls Î ³ -secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99?. Journal of Biological Chemistry, 2021, 296, 100489.	1.6	32
7	Aminopeptidase A contributes to biochemical, anatomical and cognitive defects in Alzheimer's disease (AD) mouse model and is increased at early stage in sporadic AD brain. Acta Neuropathologica, 2021, 141, 823-839.	3.9	16
8	Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy, 2021, 17, 4363-4385.	4.3	26
9	MT5â€MMP controls APP and βâ€CTF/C99 metabolism through proteolyticâ€dependent and â€independent mechanisms relevant for Alzheimer's disease. FASEB Journal, 2021, 35, e21727.	0.2	6
10	Dipeptidyl peptidase 4 contributes to Alzheimer's disease–like defects in a mouse model and is increased in sporadic Alzheimer's disease brains. Journal of Biological Chemistry, 2021, 297, 100963.	1.6	16
11	Therapeutic potential of parkin as a tumor suppressor via transcriptional control of cyclins in glioblastoma cell and animal models. Theranostics, 2021, 11, 10047-10063.	4.6	7
12	The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells, 2020, 9, 2495.	1.8	54
13	Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells, 2020, 9, 2577.	1.8	32
14	Pyk2 overexpression in postsynaptic neurons blocks amyloid $\hat{l}^21\hat{a}$ €"42-induced synaptotoxicity in microfluidic co-cultures. Brain Communications, 2020, 2, fcaa139.	1.5	13
15	Molecular Dysfunctions of Mitochondria-Associated Membranes (MAMs) in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9521.	1.8	34
16	The Transcription Factor EB Reduces the Intraneuronal Accumulation of the Beta-Secretase-Derived APP Fragment C99 in Cellular and Mouse Alzheimer's Disease Models. Cells, 2020, 9, 1204.	1.8	10
17	Targeting Post-Translational Remodeling of Ryanodine Receptor: A New Track for Alzheimer's Disease Therapy?. Current Alzheimer Research, 2020, 17, 313-323.	0.7	5
18	Targeting Î ³ -secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Translational Neurodegeneration, 2019, 8, 35.	3.6	28

#	Article	IF	CITATIONS
19	Upregulation of the Sarco-Endoplasmic Reticulum Calcium ATPase 1 Truncated Isoform Plays a Pathogenic Role in Alzheimer's Disease. Cells, 2019, 8, 1539.	1.8	9
20	Chronic fornix deep brain stimulation in a transgenic Alzheimer's rat model reduces amyloid burden, inflammation, and neuronal loss. Brain Structure and Function, 2019, 224, 363-372.	1.2	43
21	Proamyloidogenic effects of membrane type 1 matrix metalloproteinase involve MMPâ€⊋ and BACEâ€1 activities, and the modulation of APP trafficking. FASEB Journal, 2019, 33, 2910-2927.	0.2	25
22	Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death and Differentiation, 2018, 25, 873-884.	5.0	87
23	β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog–Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models. Biological Psychiatry, 2018, 83, 416-427.	0.7	45
24	Neurolysin: From Initial Detection to Latest Advances. Neurochemical Research, 2018, 43, 2017-2024.	1.6	17
25	Intraneuronal accumulation of C99 contributes to synaptic alterations, apathy-like behavior, and spatial learning deficits in 3×TgAD and 2×TgAD mice. Neurobiology of Aging, 2018, 71, 21-31.	1.5	40
26	Nuclear TP53: An unraveled function as transcriptional repressor of PINK1. Autophagy, 2018, 14, 1-3.	4.3	11
27	Are N- and C-terminally truncated Aβ species key pathological triggers in Alzheimer's disease?. Journal of Biological Chemistry, 2018, 293, 15419-15428.	1.6	84
28	The Transcription Factor Function of Parkin: Breaking the Dogma. Frontiers in Neuroscience, 2018, 12, 965.	1.4	27
29	Amyloid β production is regulated by β2-adrenergic signaling-mediated post-translational modifications of the ryanodine receptor. Journal of Biological Chemistry, 2017, 292, 10153-10168.	1.6	50
30	Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathologica, 2017, 134, 749-767.	3.9	130
31	Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathologica, 2017, 133, 955-966.	3.9	60
32	Presenilins at the crossroad of a functional interplay between PARK2/PARKIN and PINK1 to control mitophagy: Implication for neurodegenerative diseases. Autophagy, 2017, 13, 2004-2005.	4.3	30
33	The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Molecular Psychiatry, 2017, 22, 1562-1575.	4.1	79
34	α-synuclein and p53 functional interplay in physiopathological contexts. Oncotarget, 2017, 8, 9001-9002.	0.8	8
35	The Polyherbal Wattana Formula Displays Anti-Amyloidogenic Properties by Increasing α-Secretase Activities. PLoS ONE, 2017, 12, e0170360.	1.1	2
36	The Transcription Factor XBP1 in Memory and Cognition: implications in Alzheimer's Disease. Molecular Medicine, 2016, 22, 905-917.	1.9	27

#	Article	IF	CITATIONS
37	Localization and Processing ofÂtheÂAmyloid-β Protein Precursor inÂMitochondria-Associated Membranes. Journal of Alzheimer's Disease, 2016, 55, 1549-1570.	1.2	107
38	Presenilin 1 and Presenilin 2 Target Î ³ -Secretase Complexes to Distinct Cellular Compartments. Journal of Biological Chemistry, 2016, 291, 12821-12837.	1.6	52
39	Aβ42 oligomers modulate β-secretase through an XBP-1s-dependent pathway involving HRD1. Scientific Reports, 2016, 6, 37436.	1.6	19
40	Intraneuronal aggregation of the Î ² -CTF fragment of APP (C99) induces AÎ ² -independent lysosomal-autophagic pathology. Acta Neuropathologica, 2016, 132, 257-276.	3.9	158
41	Direct α-synuclein promoter transactivation by the tumor suppressor p53. Molecular Neurodegeneration, 2016, 11, 13.	4.4	33
42	ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease. EBioMedicine, 2016, 9, 278-292.	2.7	40
43	Translational research on cognitive and behavioural disorders in neurological and psychiatric diseases. Therapie, 2016, 71, 15-26.	0.6	3
44	Sox2 functionally interacts with βAPP, the βAPP intracellular domain and ADAM10 at a transcriptional level in human cells. Neuroscience, 2016, 312, 153-164.	1.1	21
45	MT5-MMP is a new pro-amyloidogenic proteinase that promotes amyloid pathology and cognitive decline in a transgenic mouse model of Alzheimer's disease. Cellular and Molecular Life Sciences, 2016, 73, 217-236.	2.4	96
46	MT5-MMP Promotes Alzheimer's Pathogenesis in the Frontal Cortex of 5xFAD Mice and APP Trafficking in vitro. Frontiers in Molecular Neuroscience, 2016, 9, 163.	1.4	34
47	Influence of Genetic Background on Apathy-Like Behavior in Triple Transgenic AD Mice. Current Alzheimer Research, 2016, 13, 942-949.	0.7	19
48	Melatonin stimulates the nonamyloidogenic processing of <i>β</i> <scp>APP</scp> through the positive transcriptional regulation of ADAM10 and ADAM17. Journal of Pineal Research, 2015, 58, 151-165.	3.4	68
49	Eph receptors: New players in Alzheimer's disease pathogenesis. Neurobiology of Disease, 2015, 73, 137-149.	2.1	34
50	Visualization of Specific Î ³ -Secretase Complexes using Bimolecular Fluorescence Complementation. Journal of Alzheimer's Disease, 2014, 40, 161-176.	1.2	9
51	Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimerââ,¬â,,¢s disease: evidence for a pro-amyloidogenic role of MT1-MMP. Frontiers in Aging Neuroscience, 2014, 6, 247.	1.7	60
52	The transcription factor X-box binding protein-1 in neurodegenerative diseases. Molecular Neurodegeneration, 2014, 9, 35.	4.4	28
53	Interplay between Parkin and p53 Governs a Physiological Homeostasis That Is Disrupted in Parkinson's Disease and Cerebral Cancer. Neurodegenerative Diseases, 2014, 13, 118-121.	0.8	14

54 Ryanodine receptors. Channels, 2014, 8, 168-168.

1.5 7

#	Article	IF	CITATIONS
55	Experimental stroke: neurolysin back on stage. Journal of Neurochemistry, 2014, 129, 1-3.	2.1	10
56	Study on Al̂²34 biology and detection in transgenic mice brains. Neurobiology of Aging, 2014, 35, 1570-1581.	1.5	17
57	Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Molecular Neurodegeneration, 2014, 9, 21.	4.4	135
58	Glioma tumor grade correlates with parkin depletion in mutant p53-linked tumors and results from loss of function of p53 transcriptional activity. Oncogene, 2014, 33, 1764-1775.	2.6	49
59	p53 in neurodegenerative diseases and brain cancers. , 2014, 142, 99-113.		77
60	Alzheimer's and prion diseases: PDK1 at the crossroads. Nature Medicine, 2013, 19, 1088-1090.	15.2	4
61	Parkin acts as a transcription factor modulating presenilin-1 and presenilin-2 promoter transactivations. Molecular Neurodegeneration, 2013, 8, P56.	4.4	0
62	Leaky Ryanodine receptors increases Amyloid-beta load and induces memory impairments in Tg2576 mouse model of Alzheimer disease. Molecular Neurodegeneration, 2013, 8, P54.	4.4	3
63	The transcription factor XBP-1 in neurodegenerative diseases. Molecular Neurodegeneration, 2013, 8, .	4.4	0
64	N-truncated Aβ peptides in complex fluids unraveled by new specific immunoassays. Neurobiology of Aging, 2013, 34, 523-539.	1.5	6
65	Further characterization of a putative serine protease contributing to the γ-secretase cleavage of β-amyloid precursor protein. Bioorganic and Medicinal Chemistry, 2013, 21, 1018-1029.	1.4	3
66	ER-stress-associated functional link between Parkin and DJ-1 via a transcriptional cascade involving the tumor suppressor p53 and the spliced X-box binding protein XBP-1. Journal of Cell Science, 2013, 126, 2124-33.	1.2	65
67	Parkin differently regulates presenilin-1 and presenilin-2 functions by direct control of their promoter transcription. Journal of Molecular Cell Biology, 2013, 5, 132-142.	1.5	31
68	6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes α-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation Journal of Biological Chemistry, 2013, 288, 21208.	1.6	0
69	α-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death Journal of Biological Chemistry, 2013, 288, 21210.	1.6	0
70	The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity Journal of Biological Chemistry, 2013, 288, 23433.	1.6	0
71	Cerebrospinal Aβ11-x and 17-x levels as indicators of mild cognitive impairment and patients' stratification in Alzheimer's disease. Translational Psychiatry, 2013, 3, e281-e281.	2.4	13
72	α-Secretase in Alzheimers Disease and Beyond: Mechanistic, Regulation and Function in the Shedding of Membrane Proteins. Current Alzheimer Research, 2012, 9, 140-156.	0.7	35

#	Article	IF	CITATIONS
73	Lysosomal Dysfunction in a Mouse Model of Sandhoff Disease Leads to Accumulation of Ganglioside-Bound Amyloid-β Peptide. Journal of Neuroscience, 2012, 32, 5223-5236.	1.7	84
74	The β-Secretase-Derived C-Terminal Fragment of βAPP, C99, But Not Aβ, Is a Key Contributor to Early Intraneuronal Lesions in Triple-Transgenic Mouse Hippocampus. Journal of Neuroscience, 2012, 32, 16243-16255.	1.7	168
75	Two-steps control of cellular prion physiology by the Extracellular Regulated Kinase-1 (ERK1). Prion, 2012, 6, 23-25.	0.9	1
76	α-Secretase-derived Fragment of Cellular Prion, N1, Protects against Monomeric and Oligomeric Amyloid β (Aβ)-associated Cell Death. Journal of Biological Chemistry, 2012, 287, 5021-5032.	1.6	84
77	p53, a Pivotal Effector of a Functional Cross-Talk Linking Presenilins and Pen-2. Neurodegenerative Diseases, 2012, 10, 52-55.	0.8	7
78	α-Secretase-Derived Cleavage of Cellular Prion Yields Biologically Active Catabolites with Distinct Functions. Neurodegenerative Diseases, 2012, 10, 294-297.	0.8	9
79	Evidence that the Amyloid-β Protein Precursor Intracellular Domain, AICD, Derives From β-Secretase-Generated C-Terminal Fragment. Journal of Alzheimer's Disease, 2012, 30, 145-153.	1.2	73
80	Ryanodine Receptor Blockade Reduces Amyloid-β Load and Memory Impairments in Tg2576 Mouse Model of Alzheimer Disease. Journal of Neuroscience, 2012, 32, 11820-11834.	1.7	197
81	Parkin: Much More than a Simple Ubiquitin Ligase. Neurodegenerative Diseases, 2012, 10, 49-51.	0.8	9
82	BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Molecular Neurodegeneration, 2012, 7, 52.	4.4	131
83	The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production. Cell Death and Differentiation, 2012, 19, 1769-1778.	5.0	19
84	Nuclear Factor-κB Regulates βAPP and β- and γ-Secretases Differently at Physiological and Supraphysiological Al² Concentrations. Journal of Biological Chemistry, 2012, 287, 24573-24584.	1.6	102
85	The physiology of the βâ€∎myloid precursor protein intracellular domain AICD. Journal of Neurochemistry, 2012, 120, 109-124.	2.1	130
86	Journal of Neurochemistry special issue on Alzheimer's disease: â€~amyloid cascade hypothesis – 20 yea on'. Journal of Neurochemistry, 2012, 120, iii-iv.	^{rs} 2.1	18
87	ERK1-independent α-secretase cut of β-amyloid precursor protein via M1 muscarinic receptors and PKCα/ε. Molecular and Cellular Neurosciences, 2011, 47, 223-232.	1.0	32
88	γ-Secretase-Mediated Regulation of Neprilysin: Influence of Cell Density and Aging and Modulation by Imatinib. Journal of Alzheimer's Disease, 2011, 27, 511-520.	1.2	31
89	Apoptosis in Parkinson's disease: Is p53 the missing link between genetic and sporadic Parkinsonism?. Cellular Signalling, 2011, 23, 963-968.	1.7	60
90	The Extracellular Regulated Kinase-1 (ERK1) Controls Regulated α-Secretase-mediated Processing, Promoter Transactivation, and mRNA Levels of the Cellular Prion Protein. Journal of Biological Chemistry, 2011, 286, 29192-29206.	1.6	22

#	Article	IF	CITATIONS
91	The extracellular regulated kinase-1 (ERK1) controls regulated α-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein Journal of Biological Chemistry, 2011, 286, 33708.	1.6	0
92	p53, a Molecular Bridge Between Alzheimer's Disease Pathology and Cancers?. Research and Perspectives in Alzheimer's Disease, 2011, , 95-101.	0.1	0
93	Days to criterion as an indicator of toxicity associated with human Alzheimer amyloidâ€Î² oligomers. Annals of Neurology, 2010, 68, 220-230.	2.8	123
94	Loss of function of DJ-1 triggered by Parkinson's disease-associated mutation is due to proteolytic resistance to caspase-6. Cell Death and Differentiation, 2010, 17, 158-169.	5.0	68
95	A novel parkin-mediated transcriptional function links p53 to familial Parkinson's disease. Cell Cycle, 2010, 9, 16-17.	1.3	13
96	p53 Is Regulated by and Regulates Members of the Î ³ -Secretase Complex. Neurodegenerative Diseases, 2010, 7, 50-55.	0.8	38
97	The α-Secretase-derived N-terminal Product of Cellular Prion, N1, Displays Neuroprotective Function in Vitro and in Vivo. Journal of Biological Chemistry, 2009, 284, 35973-35986.	1.6	129
98	TMP21 Transmembrane Domain Regulates Î ³ -Secretase Cleavage. Journal of Biological Chemistry, 2009, 284, 28634-28641.	1.6	23
99	p53-Dependent Transcriptional Control of Cellular Prion by Presenilins. Journal of Neuroscience, 2009, 29, 6752-6760.	1.7	54
100	APH1 Polar Transmembrane Residues Regulate the Assembly and Activity of Presenilin Complexes. Journal of Biological Chemistry, 2009, 284, 16298-16307.	1.6	30
101	p53-dependent control of transactivation of the Pen2 promoter by presenilins. Journal of Cell Science, 2009, 122, 4003-4008.	1.2	21
102	Amyloid-β42 is preferentially accumulated in muscle fibers of patients with sporadic inclusion-body myositis. Acta Neuropathologica, 2009, 117, 569-574.	3.9	56
103	Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease. Nature Cell Biology, 2009, 11, 1370-1375.	4.6	173
104	Aminopeptidase A contributes to the Nâ€terminal truncation of amyloid βâ€peptide. Journal of Neurochemistry, 2009, 109, 248-256.	2.1	98
105	p53â€Dependent control of cell death by nicastrin: lack of requirement for presenilinâ€dependent γâ€secretase complex. Journal of Neurochemistry, 2009, 109, 225-237.	2.1	17
106	Pharmacological evidences for DFK167â€sensitive presenilinâ€independent γâ€secretaseâ€like activity. Journal of Neurochemistry, 2009, 110, 275-283.	2.1	15
107	Mutant Presenilin 1 Increases the Levels of Alzheimer Amyloid β-Peptide Aβ42 in Late Compartments of the Constitutive Secretory Pathway. Journal of Neurochemistry, 2008, 74, 1878-1884.	2.1	38
108	Isoform-specific contribution of protein kinase C to prion processing. Molecular and Cellular Neurosciences, 2008, 39, 400-410.	1.0	20

#	Article	IF	CITATIONS
109	TMP21 regulates $A^{\hat{1}2}$ production but does not affect caspase-3, p53, and neprilysin. Biochemical and Biophysical Research Communications, 2008, 371, 69-74.	1.0	14
110	NFκB-dependent Control of BACE1 Promoter Transactivation by Aβ42. Journal of Biological Chemistry, 2008, 283, 10037-10047.	1.6	117
111	Editorial [Production and Fate of Amyloid Peptides: Recent Advances and Perspectives]. Current Alzheimer Research, 2008, 5, 90-91.	0.7	4
112	Regulation of βAPP and PrPc Cleavage by α-Secretase: Mechanistic and Therapeutic Perspectives. Current Alzheimer Research, 2008, 5, 202-211.	0.7	40
113	Physiological Processing of the Cellular Prion Protein and \hat{I}^2APP : Enzymes and Regulation. , 2008, , 305-316.		0
114	The C-terminal Products of Cellular Prion Protein Processing, C1 and C2, Exert Distinct Influence on p53-dependent Staurosporine-induced Caspase-3 Activation. Journal of Biological Chemistry, 2007, 282, 1956-1963.	1.6	65
115	p53-dependent Aph-1 and Pen-2 Anti-apoptotic Phenotype Requires the Integrity of the γ-Secretase Complex but Is Independent of Its Activity. Journal of Biological Chemistry, 2007, 282, 10516-10525.	1.6	24
116	The γ /η-Secretase-Derived APP Intracellular Domain Fragments Regulate p53. Current Alzheimer Research, 2007, 4, 423-426.	0.7	38
117	Study on the Putative Contribution of Caspases and the Proteasome to the Degradation of Aph-1a and Pen-2. Neurodegenerative Diseases, 2007, 4, 156-163.	0.8	4
118	M1 and M3 Muscarinic Receptors Control Physiological Processing of Cellular Prion by Modulating ADAM17 Phosphorylation and Activity. Journal of Neuroscience, 2007, 27, 4083-4092.	1.7	51
119	Response to Correspondence: Pardossi-Piquard etÂal., "Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of βAPP and APLP.―Neuron 46, 541–554. Neuron, 2007, 53, 483-486.	3.8	21
120	2.109 A novel function of parkin as a transcriptional repressor of the oncogene p53 and its impairment by familial associated Parkinson's disease mutations. Parkinsonism and Related Disorders, 2007, 13, S94.	1.1	0
121	2.112 DJ-1 regulation of p53 pathway and its impairment by Parkinson's disease-associated mutations. Parkinsonism and Related Disorders, 2007, 13, S95.	1.1	0
122	Design and characterization of a novel cellular prion-derived quenched fluorimetric substrate of α-secretase. Biochemical and Biophysical Research Communications, 2006, 347, 254-260.	1.0	23
123	Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins. Biochemical Journal, 2006, 394, 501-509.	1.7	25
124	APPÎμ, the Îμ-secretase-derived N-terminal product of the β-amyloid precursor protein, behaves as a type I protein and undergoes α-, β-, and γ-secretase cleavages. Journal of Neurochemistry, 2006, 97, 807-817.	2.1	21
125	Neprilysin activity and expression are controlled by nicastrin. Journal of Neurochemistry, 2006, 97, 1052-1056.	2.1	39
126	TMP21 is a presenilin complex component that modulates Î ³ -secretase but not É>-secretase activity. Nature, 2006, 440, 1208-1212.	13.7	286

#	Article	IF	CITATIONS
127	Phenotype associated with APP duplication in five families. Brain, 2006, 129, 2966-2976.	3.7	230
128	Presenilin-Dependent Â-Secretase-Mediated Control of p53-Associated Cell Death in Alzheimer's Disease. Journal of Neuroscience, 2006, 26, 6377-6385.	1.7	164
129	6-Hydroxydopamine but Not 1-Methyl-4-phenylpyridinium Abolishes α-Synuclein Anti-apoptotic Phenotype by Inhibiting Its Proteasomal Degradation and by Promoting Its Aggregation. Journal of Biological Chemistry, 2006, 281, 9824-9831.	1.6	48
130	Caspase-3-derived C-terminal Product of Synphilin-1 Displays Antiapoptotic Function via Modulation of the p53-dependent Cell Death Pathway. Journal of Biological Chemistry, 2006, 281, 11515-11522.	1.6	34
131	Combined pharmacological, mutational and cell biology approaches indicate that p53-dependent caspase 3 activation triggered by cellular prion is dependent on its endocytosis. Journal of Neurochemistry, 2005, 92, 1399-1407.	2.1	23
132	Design and characterization of a new cell-permeant inhibitor of the \hat{I}^2 -secretase BACE1. British Journal of Pharmacology, 2005, 145, 228-235.	2.7	33
133	JLK Inhibitors: Isocoumarin Compounds as Putative Probes to Selectively Target the γ-Secretase Pathway. Current Alzheimer Research, 2005, 2, 327-334.	0.7	10
134	Intracellular Aβ42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease. FASEB Journal, 2005, 19, 1-29.	0.2	244
135	The Disintegrin ADAM9 Indirectly Contributes to the Physiological Processing of Cellular Prion by Modulating ADAM10 Activity. Journal of Biological Chemistry, 2005, 280, 40624-40631.	1.6	101
136	Presenilin-Dependent Transcriptional Control of the Aβ-Degrading Enzyme Neprilysin by Intracellular Domains of βAPP and APLP. Neuron, 2005, 46, 541-554.	3.8	317
137	Primary Cultured Neurons Devoid of Cellular Prion Display Lower Responsiveness to Staurosporine through the Control of p53 at Both Transcriptional and Post-transcriptional Levels. Journal of Biological Chemistry, 2004, 279, 612-618.	1.6	62
138	Presenilin-directed inhibitors of gamma-secretase trigger caspase3 activation in presenilin-expressing and presenilin-deficient cells. Journal of Neurochemistry, 2004, 90, 800-806.	2.1	14
139	Increased expression of neuronal cyclooxygenase-2 in the hippocampus in amyotrophic lateral sclerosis both with and without dementia. Acta Neuropathologica, 2004, 107, 399-405.	3.9	17
140	P1-209 APH-1 and PEN-2: a study on their proteolysis. Neurobiology of Aging, 2004, 25, S155.	1.5	0
141	C-terminal fragments of amyloid-beta peptide cause cholinergic axonal degeneration by a toxic effect rather than by physical injury in the nondemented human brain. Neurochemical Research, 2003, 28, 493-498.	1.6	3
142	Variability and heterogeneity in Alzheimer's disease with cotton wool plaques: a clinicopathological study of four autopsy cases. Acta Neuropathologica, 2003, 106, 348-356.	3.9	29
143	JLK isocoumarin inhibitors: Selective ?-secretase inhibitors that do not interfere with notch pathway in vitro or in vivo. Journal of Neuroscience Research, 2003, 74, 370-377.	1.3	43
144	Synthesis of new 3-alkoxy-7-amino-4-chloro-isocoumarin derivatives as new β-amyloid peptide production inhibitors and their activities on various classes of protease. Bioorganic and Medicinal Chemistry, 2003, 11, 3141-3152.	1.4	44

#	Article	IF	CITATIONS
145	Cyclooxygenase-2 in the hippocampus is up-regulated in Alzheimer's disease but not in variant Alzheimer's disease with cotton wool plaques in humans. Neuroscience Letters, 2003, 343, 175-179.	1.0	19
146	Cellular Prion Protein Sensitizes Neurons to Apoptotic Stimuli through Mdm2-regulated and p53-dependent Caspase 3-like Activation. Journal of Biological Chemistry, 2003, 278, 10061-10066.	1.6	93
147	β-Synuclein Displays an Antiapoptotic p53-dependent Phenotype and Protects Neurons from 6-Hydroxydopamine-induced Caspase 3 Activation. Journal of Biological Chemistry, 2003, 278, 37330-37335.	1.6	70
148	The C-terminal Fragment of Presenilin 2 Triggers p53-mediated Staurosporine-induced Apoptosis, a Function Independent of the Presenilinase-derived N-terminal Counterpart. Journal of Biological Chemistry, 2003, 278, 12064-12069.	1.6	50
149	BACE1- and BACE2-expressing Human Cells. Journal of Biological Chemistry, 2003, 278, 25859-25866.	1.6	68
150	α-Synuclein Lowers p53-dependent Apoptotic Response of Neuronal Cells. Journal of Biological Chemistry, 2002, 277, 50980-50984.	1.6	119
151	Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4043-4048.	3.3	129
152	γ-Secretase-like Cleavages of Notch and βAPP Are Mutually Exclusive in Human Cells. Biochemical and Biophysical Research Communications, 2002, 290, 1408-1410.	1.0	14
153	Murine T cells expressing high activity of prolyl endopeptidase are susceptible to activation-induced cell death. FEBS Letters, 2002, 512, 163-167.	1.3	15
154	Human amyloid-β causes changes in the levels of endothelial protein kinase C and its α isoform in vitro. Neurochemistry International, 2002, 41, 409-414.	1.9	27
155	Alzheimer's and prion diseases: distinct pathologies, common proteolytic denominators. Trends in Neurosciences, 2002, 25, 616-620.	4.2	92
156	Métabolisme du précurseur du peptide amyloÃ⁻de et présénilines. Medecine/Sciences, 2002, 18, 717-72	40.0	7
157	Amyloid Precursor Protein, Presenilins, and alpha -Synuclein: Molecular Pathogenesis and Pharmacological Applications in Alzheimer's Disease. Pharmacological Reviews, 2002, 54, 469-525.	7.1	421
158	NACP/α-Synuclein, NAC, and β-amyloid pathology of familial Alzheimer's disease with the E184D presenilin-1 mutation: a clinicopathological study of two autopsy cases. Acta Neuropathologica, 2002, 104, 637-648.	3.9	37
159	Overexpression of PrPc triggers caspase \widehat{f} activation: potentiation by proteasome inhibitors and blockade by anti-PrP antibodies. Journal of Neurochemistry, 2002, 83, 1208-1214.	2.1	65
160	Influence of Region-Specific Alterations of Neuropeptidase Content on the Catabolic Fates of Neuropeptides in Alzheimer's Disease. Journal of Neurochemistry, 2002, 62, 645-655.	2.1	46
161	Amyloid-lowering isocoumarins are not direct inhibitors of Î ³ -secretase - Reponse. Nature Cell Biology, 2002, 4, E111-E112.	4.6	5
162	Reply: Potential external source of AÎ ² in biological samples. Nature Cell Biology, 2002, 4, E165-E166.	4.6	1

#	Article	IF	CITATIONS
163	Wild-Type and Mutated Nicastrins Do Not Display Aminopeptidase M- and B-like Activities. Biochemical and Biophysical Research Communications, 2001, 289, 678-680.	1.0	11
164	Constitutive α-secretase cleavage of the β-amyloid precursor protein in the furin-deficient LoVo cell line: involvement of the pro-hormone convertase 7 and the disintegrin metalloprotease ADAM10. Journal of Neurochemistry, 2001, 76, 1532-1539.	2.1	113
165	The multiple paradoxes of presenilins. Journal of Neurochemistry, 2001, 76, 1621-1627.	2.1	45
166	The caspase-derived C-terminal fragment of βAPP induces caspase-independent toxicity and triggers selective increase of Aβ42 in mammalian cells. Journal of Neurochemistry, 2001, 78, 1153-1161.	2.1	33
167	The C-terminal fragment of the Alzheimer's disease amyloid protein precursor is degraded by a proteasome-dependent mechanism distinct from γ-secretase. FEBS Journal, 2001, 268, 5329-5336.	0.2	116
168	Endogenous Î ² -amyloid production in presenilin-deficient embryonic mouse fibroblasts. Nature Cell Biology, 2001, 3, 1030-1033.	4.6	94
169	New protease inhibitors prevent γ-secretase-mediated production of Aβ40/42 without affecting Notch cleavage. Nature Cell Biology, 2001, 3, 507-511.	4.6	181
170	The Disintegrins ADAM10 and TACE Contribute to the Constitutive and Phorbol Ester-regulated Normal Cleavage of the Cellular Prion Protein. Journal of Biological Chemistry, 2001, 276, 37743-37746.	1.6	222
171	Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Abeta secretion and APP C-terminal fragment stability. Human Molecular Genetics, 2001, 10, 1665-1671.	1.4	178
172	Post-translational Processing of β-Secretase (β-Amyloid-converting Enzyme) and Its Ectodomain Shedding. Journal of Biological Chemistry, 2001, 276, 10879-10887.	1.6	273
173	Novel proline endopeptidase inhibitors do not modify Aβ40/42 formation and degradation by human cells expressing wild-type and Swedish mutated β-amyloid precursor protein. British Journal of Pharmacology, 2000, 130, 1613-1617.	2.7	18
174	Aging Increased Amyloid Peptide and Caused Amyloid Plaques in Brain of Old APP/V717I Transgenic Mice by a Different Mechanism than Mutant Presenilin1. Journal of Neuroscience, 2000, 20, 6452-6458.	1.7	107
175	Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5346-5350.	3.3	58
176	Wild-type but Not Parkinson's Disease-related Ala-53 → Thr Mutant α-Synuclein Protects Neuronal Cells from Apoptotic Stimuli. Journal of Biological Chemistry, 2000, 275, 24065-24069.	1.6	198
177	Phorbol Ester-regulated Cleavage of Normal Prion Protein in HEK293 Human Cells and Murine Neurons. Journal of Biological Chemistry, 2000, 275, 35612-35616.	1.6	98
178	Overexpression of Rab11 or Constitutively Active Rab11 Does Not Affect sAPPα and Aβ Secretions by Wild-Type and Swedish Mutated βAPP-Expressing HEK293 Cells. Biochemical and Biophysical Research Communications, 2000, 275, 910-915.	1.0	8
179	Immunohistochemical Analysis of Cerebral Cortical and Vascular Lesions in the Primate Microcebus murinus Reveal Distinct Amyloid β1–42 and β1–40 Immunoreactivity Profiles. Neurobiology of Disease, 2000, 7, 1-8.	2.1	58
180	Behavioral Disturbances without Amyloid Deposits in Mice Overexpressing Human Amyloid Precursor Protein with Flemish (A692G) or Dutch (E693Q) Mutation. Neurobiology of Disease, 2000, 7, 9-22.	2.1	100

#	Article	IF	CITATIONS
181	Prominent Cerebral Amyloid Angiopathy in Transgenic Mice Overexpressing the London Mutant of Human APP in Neurons. American Journal of Pathology, 2000, 157, 1283-1298.	1.9	213
182	Intraneuronal AÎ ² 42 Accumulation in Human Brain. American Journal of Pathology, 2000, 156, 15-20.	1.9	930
183	α-Synuclein and the Parkinson's disease-related mutant Ala53Thr-α-synuclein do not undergo proteasomal degradation in HEK293 and neuronal cells. Neuroscience Letters, 2000, 285, 79-82.	1.0	121
184	Vascular and parenchymal Aβ deposition in the aging dog: correlation with behavior. Neurobiology of Aging, 2000, 21, 695-704.	1.5	133
185	Role of the proteasome in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 133-138.	1.8	89
186	Laminar specific loss of isocortical presenilin 1 immunoreactivity in Alzheimer's disease. Correlations with the amyloid load and the density of tau-positive neurofibrillary tangles. Neuropathology and Applied Neurobiology, 2000, 26, 117-123.	1.8	10
187	C-Terminal Maturation Fragments of Presenilin 1 and 2 Control Secretion of APPα and Aβ by Human Cells and Are Degraded by Proteasome. Molecular Medicine, 1999, 5, 160-168.	1.9	26
188	Unusual phenotypic alteration of amyloid precursor protein (ÂAPP) maturation by a new Val-715 -> Met ÂAPP-770 mutation responsible for probable early-onset Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4119-4124.	3.3	183
189	Presenilins: Multifunctional Proteins Involved in Alzheimer's Disease Pathology. IUBMB Life, 1999, 48, 33-39.	1.5	35
190	Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11872-11877.	3.3	481
191	Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain. Journal of Biological Chemistry, 1999, 274, 6483-6492.	1.6	611
192	Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nature Medicine, 1999, 5, 560-564.	15.2	355
193	Effect of protein kinase A inhibitors on the production of Aβ40 and Aβ42 by human cells expressing normal and Alzheimer's disease-linked mutated βAPP and presenilin 1. British Journal of Pharmacology, 1999, 126, 1186-1190.	2.7	24
194	Presenilins: Multifunctional Proteins Involved in Alzheimer's Disease Pathology. IUBMB Life, 1999, 48, 33-39.	1.5	41
195	Presenilins. Molecular Neurobiology, 1999, 19, 255-265.	1.9	26
196	Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta -amyloid peptides. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 742-747.	3.3	354
197	Confocal Microscopy Reveals Thimet Oligopeptidase (EC 3.4.24.15) and Neurolysin (EC 3.4.24.16) in the Classical Secretory Pathway. DNA and Cell Biology, 1999, 18, 323-331.	0.9	33
198	S 17092-1, a Highly Potent, Specific and Cell Permeant Inhibitor of Human Proline Endopeptidase. Biochemical and Biophysical Research Communications, 1999, 257, 657-661.	1.0	57

#	Article	IF	CITATIONS
199	Estrogen reduces neuronal generation of Alzheimer β-amyloid peptides. Nature Medicine, 1998, 4, 447-451.	15.2	545
200	Neuropathology of preclinical and clinical lateonset Alzheimer's disease. Annals of Neurology, 1998, 43, 673-676.	2.8	83
201	Neuropeptide Specificity and Inhibition of Recombinant Isoforms of the Endopeptidase 3.4.24.16 Family: Comparison with the Related Recombinant Endopeptidase 3.4.24.15. Biochemical and Biophysical Research Communications, 1998, 250, 5-11.	1.0	80
202	Alzheimer's Disease-Linked Mutation of Presenilin 2 (N1411-PS2) Drastically Lowers APPα Secretion: Control by the Proteasome. Biochemical and Biophysical Research Communications, 1998, 252, 134-138.	1.0	42
203	Proteasome Inhibitors Prevent the Degradation of Familial Alzheimer's Disease-Linked Presenilin 1 and Potentiate Aβ42 Recovery from Human Cells. Molecular Medicine, 1998, 4, 147-157.	1.9	67
204	Contribution of endopeptidase 3.4.24.15 to central neurotensin inactivation. European Journal of Pharmacology, 1997, 334, 49-53.	1.7	35
205	Lack of effect of Presenilin 1, βAPP and their Alzheimer's disease-related mutated forms on Xenopus oocytes membrane currents. Neuroscience Letters, 1997, 221, 85-88.	1.0	7
206	Characterization of New Polyclonal Antibodies Specific for 40 and 42 Amino Acid-Long Amyloid Î ² Peptides: Their Use to Examine the Cell Biology of Presenilins and the Immunohistochemistry of Sporadic Alzheimer's Disease and Cerebral Amyloid Angiopathy Cases. Molecular Medicine, 1997, 3, 695-707.	1.9	142
207	Examination of the role of endopeptidase 3.4.24.15 in Aβ secretion by human transfected cells. British Journal of Pharmacology, 1997, 121, 556-562.	2.7	37
208	Effect of a novel selective and potent phosphinic peptide inhibitor of endopeptidase 3.4.24.16 on neurotensin-induced analgesia and neuronal inactivation. British Journal of Pharmacology, 1997, 121, 705-710.	2.7	34
209	Cathepsin D displays in vitro \hat{l}^2 -secretase-like specificity. Brain Research, 1997, 750, 11-19.	1.1	94
210	Proteasome Contributes to the α‧ecretase Pathway of Amyloid Precursor Protein in Human Cells. Journal of Neurochemistry, 1997, 68, 698-703.	2.1	48
211	Stably Transfected Human Cells Overexpressing Rat Brain Endopeptidase 3.4.24.16: Biochemical Characterization of the Activity and Expression of Soluble and Membraneâ€Associated Counterparts. Journal of Neurochemistry, 1997, 68, 837-845.	2.1	18
212	αâ€Secretaseâ€Derived Product of βâ€Amyloid Precursor Protein Is Decreased by Presenilin 1 Mutations Linked to Familial Alzheimer's Disease. Journal of Neurochemistry, 1997, 69, 2494-2499.	2.1	63
213	Constitutive and Protein Kinase Câ€Regulated Secretory Cleavage of Alzheimer's βâ€Amyloid Precursor Protein: Different Control of Early and Late Events by the Proteasome. Journal of Neurochemistry, 1997, 69, 2500-2505.	2.1	41
214	Contribution of the Proteasome to the α-Secretase Pathway in Alzheimer's Disease. Advances in Experimental Medicine and Biology, 1997, 421, 267-272.	0.8	5
215	Distinct Properties of Neuronal and Astrocytic Endopeptidase 3.4.24.16: A Study on Differentiation, Subcellular Distribution, and Secretion Processes. Journal of Neuroscience, 1996, 16, 5049-5059.	1.7	68
216	Purification and characterization of human endopeptidase 3.4.24.16. Comparison with the porcine counterpart indicates a unique cleavage site on neurotensin. Brain Research, 1996, 709, 51-58.	1.1	19

#	Article	IF	CITATIONS
217	Development of the First Potent and Selective Inhibitor of the Zinc Endopeptidase Neurolysin Using a Systematic Approach Based on Combinatorial Chemistry of Phosphinic Peptides. Journal of Biological Chemistry, 1996, 271, 19606-19611.	1.6	86
218	Protein Kinase A Phosphorylation of the Proteasome: A Contribution to the α‧ecretase Pathway in Human Cells. Journal of Neurochemistry, 1996, 67, 2616-2619.	2.1	36
219	Molecular Cloning and Expression of Rat Brain Endopeptidase 3.4.24.16. Journal of Biological Chemistry, 1995, 270, 27266-27271.	1.6	64
220	Development of Highly Potent and Selective Phosphinic Peptide Inhibitors of Zinc Endopeptidase 24-15 Using Combinatorial Chemistry. Journal of Biological Chemistry, 1995, 270, 21701-21706.	1.6	104
221	Phosphorusâ€containing peptides as mixed inhibitors of endopeptidase 3.4.24.15 and 3.4.24.16: effect on neurotensin degradation in vitro and in vivo. British Journal of Pharmacology, 1995, 115, 1053-1063.	2.7	31
222	Processing of the βâ€Amyloid Precursor Protein and Its Regulation in Alzheimer's Disease. Journal of Neurochemistry, 1995, 65, 1431-1444.	2.1	402
223	Neurotensin and neuromedin N undergo distinct catabolic processes in murine astrocytes and primary cultured neurons. FEBS Journal, 1994, 221, 297-306.	0.2	16
224	Cholinesterases Display Genuine Arylacylamidase Activity but Are Totally Devoid of Intrinsic Peptidase Activities. Journal of Neurochemistry, 1994, 62, 756-763.	2.1	28
225	Rat kidney endopeptidase 24.16. Purification, physico-chemical characteristics and differential specificity towards opiates, tachykinins and neurotensin-related peptides. FEBS Journal, 1993, 211, 79-90.	0.2	33
226	Synthesis and analgesic effects of N-[3-[(hydroxyamino)carbonyl]-1-oxo-2(R)-benzylpropyl]-L-isoleucyl-L-leucine, a new potent inhibitor of multiple neurotensin/neuromedin N degrading enzymes. Journal of Medicinal Chemistry, 1993, 36, 1369-1379.	2.9	35
227	Differential catabolic fate of neuromedin N and neurotensin in the canine intestinal mucosa. Peptides, 1993, 14, 457-463.	1.2	3
228	A survey of the cerebral regionalization and ontogeny of eight exo- and endopeptidases in murines. Peptides, 1993, 14, 593-599.	1.2	34
229	Neurotensin Receptors in Primary Culture of Neurons. Methods in Neurosciences, 1993, 11, 334-351.	0.5	4
230	Neurotensin Receptor Localization on Neurons Bearing the Neurotensin-Degrading Enzyme Endopeptidase 24-16. Annals of the New York Academy of Sciences, 1992, 668, 326-328.	1.8	1
231	Neurotensin and Neuromedin N Undergo Distinct Proteolytic Inactivation in Ventral Tegmental Area and Nucleus Accumbens. Annals of the New York Academy of Sciences, 1992, 668, 329-332.	1.8	0
232	Light and Electron Microscopic Localization of the Neutral Metalloendopeptidase EC 3.4.24.16 in the Mesencephalon of the Rat. European Journal of Neuroscience, 1992, 4, 1309-1319.	1.2	33
233	Endopeptidase 24-16 in Murines: Tissue Distribution, Cerebral Regionalization, and Ontogeny. Journal of Neurochemistry, 1992, 59, 1862-1867.	2.1	27
234	Neurotensin and Neuromedin N Are Differently Metabolized in Ventral Tegmental Area and Nucleus Accumbens. Journal of Neurochemistry, 1991, 56, 1320-1328.	2.1	22

#	Article	IF	CITATIONS
235	Specific inhibition of endopeptidase 24.16 by dipeptides. FEBS Journal, 1991, 202, 269-276.	0.2	57
236	Monoclonal Antibodies Allow Precipitation of Esterasic but Not Peptidasic Activities Associated with Butyrylcholinesterase. Journal of Neurochemistry, 1990, 55, 750-755.	2.1	22
237	Non-cholinergic actions of acetylcholinesterases: a genuine peptidase function or contaminating proteases?. Trends in Biochemical Sciences, 1990, 15, 337-338.	3.7	9
238	Peptidasic Activities Associated with Acetylcholinesterase Are Due to Contaminating Enzymes. Journal of Neurochemistry, 1989, 53, 924-928.	2.1	40
239	Neuropeptide-hydrolysing activities in synaptosomal fractions from dog ileum myenteric, deep muscular and submucous plexi. Their participation in neurotensin inactivation. Peptides, 1989, 10, 1055-1061.	1.2	12
240	Peripheral inactivation of neurotensin. Isolation and characterization of a metallopeptidase from rat ileum. FEBS Journal, 1988, 175, 481-489.	0.2	35
241	Neurotensin metabolism in various tissues of central and peripheral origins: ubiquitous involvement of a novel neurotensin degrading metalloendopeptidase. Biochimie, 1988, 70, 75-82.	1.3	53
242	Further characterization of a neurotensin-degrading neutral metalloendopeptidase from rat brain. Neurochemistry International, 1988, 12, 351-359.	1.9	29
243	Neurotensin-Metabolizing Peptidases in Rat Fundus Plasma Membranes. Journal of Neurochemistry, 1987, 49, 507-512.	2.1	10
244	Peptidases in dog-ileum circular and longitudinal smooth-muscle plasma membranes. Their relative contribution to the metabolism of neurotensin. FEBS Journal, 1987, 166, 461-468.	0.2	16
245	Neuromedin N: High affinity interaction with brain neurotensin receptors and rapid inactivation by brain synaptic peptidases. European Journal of Pharmacology, 1986, 126, 239-244.	1.7	75
246	Catabolism of neurotensin by neural (neuroblastoma clone N1E115) and extraneural (HT29) cell lines. Peptides, 1986, 7, 1071-1077.	1.2	33
247	High-Affinity Receptor Sites and Rapid Proteolytic Inactivation of Neurotensin in Primary Cultured Neurons. Journal of Neurochemistry, 1986, 47, 1742-1748.	2.1	45
248	Inactivation of Neurotensin by Rat Brain Synaptic Membranes Partly Occurs Through Cleavage at the Arg8-Arg9Peptide Bond by a Metalloendopeptidase. Journal of Neurochemistry, 1985, 45, 1509-1513.	2.1	81
249	Regulation of cyclic GMP levels by neurotensin in neuroblastoma clone N1E115. Biochemical and Biophysical Research Communications, 1985, 129, 117-125.	1.0	53
250	Inactivation of Neurotensin by Rat Brain Synaptic Membranes. Cleavage at the Pro10-Tyr11Bond by Endopeptidase 24.11 (Enkephalinase) and a Peptidase Different from Proline-Endopeptidase. Journal of Neurochemistry, 1984, 43, 1295-1301.	2.1	80
251	Loss of high affinity neurotensin receptors in substantia nigra from parkinsonian subjects. Biochemical and Biophysical Research Communications, 1984, 125, 395-404.	1.0	71
252	Comparison of some biological properties of neurotensin and its natural analogue LANT-6. European Journal of Pharmacology, 1984, 99, 357-360.	1.7	10

#	Article	IF	CITATIONS
253	Degradation of Neurotensin by Rat Brain Synaptic Membranes: Involvement of a Thermolysin-Like Metalloendopeptidase (Enkephalinase), Angiotensin-Converting Enzyme, and Other Unidentified Peptidases. Journal of Neurochemistry, 1983, 41, 375-384.	2.1	147
254	[TRP11]-Neurotensin and xenopsin discriminate between rat and guinea-pig neurotensin receptors. Life Sciences, 1982, 31, 1145-1150.	2.0	21
255	DEGRADATION OF NEUROTENSIN BY BRAIN SYNAPTIC MEMBRANES. Annals of the New York Academy of Sciences, 1982, 400, 413-414.	1.8	8
256	MONOIODO-Trp11-NEUROTENSIN, A NEW LIGAND TO STUDY THE INTERACTION OF NEUROTENSIN WITH ITS RECEPTOR. Annals of the New York Academy of Sciences, 1982, 400, 436-437.	1.8	1
257	Insulin stimulation of amino acid transport in primary cultured rat hepatocytes varies in direct proportion to insulin binding. FEBS Letters, 1981, 128, 321-324.	1.3	8