Bekir Akgöz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8185032/publications.pdf Version: 2024-02-01

REKID AKCÃOZ

#	Article	IF	CITATIONS
1	Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. International Journal of Engineering Science, 2011, 49, 1268-1280.	5.0	422
2	Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 2013, 98, 314-322.	5.8	315
3	A size-dependent shear deformation beam model based on the strain gradient elasticity theory. International Journal of Engineering Science, 2013, 70, 1-14.	5.0	211
4	Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Archive of Applied Mechanics, 2012, 82, 423-443.	2.2	204
5	Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. International Journal of Engineering Science, 2014, 85, 90-104.	5.0	202
6	Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mechanica, 2013, 224, 2185-2201.	2.1	190
7	A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mechanica, 2015, 226, 2277-2294.	2.1	189
8	Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. JVC/Journal of Vibration and Control, 2014, 20, 606-616.	2.6	187
9	A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences, 2015, 99, 10-20.	6.7	179
10	Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica, 2016, 119, 1-12.	3.2	172
11	On dynamic analysis of nanorods. International Journal of Engineering Science, 2018, 130, 33-50.	5.0	170
12	On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science, 2020, 149, 103236.	5.0	160
13	Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. European Physical Journal Plus, 2020, 135, 1.	2.6	159
14	Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Composites Part B: Engineering, 2017, 129, 77-87.	12.0	147
15	Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Composites Part B: Engineering, 2013, 55, 263-268.	12.0	127
16	Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. Materials & Design, 2012, 42, 164-171.	5.1	124
17	Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines, 2022, 50, 1914-1931.	4.7	124
18	Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity. Composite Structures, 2015, 134, 294-301.	5.8	121

Bekir Akgöz

#	Article	IF	CITATIONS
19	Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation. Applied Mathematics and Computation, 2012, 219, 3226-3240.	2.2	120
20	Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica, 2013, 48, 863-873.	2.0	107
21	A new trigonometric beam model for buckling of strain gradient microbeams. International Journal of Mechanical Sciences, 2014, 81, 88-94.	6.7	106
22	Shear deformation beam models for functionally graded microbeams with new shear correction factors. Composite Structures, 2014, 112, 214-225.	5.8	106
23	A new eigenvalue problem solver for thermoâ€mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Mathematical Methods in the Applied Sciences, 2022, 45, 2592-2614.	2.3	101
24	Buckling Analysis of Cantilever Carbon Nanotubes Using the Strain Gradient Elasticity and Modified Couple Stress Theories. Journal of Computational and Theoretical Nanoscience, 2011, 8, 1821-1827.	0.4	96
25	Nonlinear static response of laminated composite plates by discrete singular convolution method. Composite Structures, 2010, 93, 153-161.	5.8	95
26	Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Computational Materials Science, 2013, 77, 295-303.	3.0	87
27	Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution. International Journal of Pressure Vessels and Piping, 2011, 88, 290-300.	2.6	86
28	A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Composite Structures, 2017, 176, 1028-1038.	5.8	86
29	Free Vibration and Bending Analyses of Cantilever Microtubules Based on Nonlocal Continuum Model. Mathematical and Computational Applications, 2010, 15, 289-298.	1.3	82
30	Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel and Composite Structures, 2011, 11, 403-421.	1.3	77
31	Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Current Applied Physics, 2011, 11, 1133-1138.	2.4	76
32	On the non-linear dynamics of torus-shaped and cylindrical shell structures. International Journal of Engineering Science, 2020, 156, 103371.	5.0	72
33	Dynamic Analysis of a Fiber-Reinforced Composite Beam under a Moving Load by the Ritz Method. Mathematics, 2021, 9, 1048.	2.2	72
34	Vibration analysis of carbon nanotubeâ€reinforced composite microbeams. Mathematical Methods in the Applied Sciences, 0, , .	2.3	68
35	Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Structural Engineering and Mechanics, 2013, 48, 195-205.	1.0	65
36	Buckling and post-buckling responses of smart doubly curved composite shallow shells embedded in SMA fiber under hygro-thermal loading. Composite Structures, 2019, 223, 110988.	5.8	61

Bekir Akgöz

#	Article	IF	CITATIONS
37	New static and dynamic analyses of macro and nano FGM plates using exact three-dimensional elasticity in thermal environment. Composite Structures, 2018, 192, 626-641.	5.8	56
38	Free Vibration Analysis of Carbon Nanotubes Based on Shear Deformable Beam Theory by Discrete Singular Convolution Technique. Mathematical and Computational Applications, 2010, 15, 57-65.	1.3	55
39	Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Composites Part B: Engineering, 2018, 150, 68-77.	12.0	53
40	Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 2021, 11, 571.	4.1	39
41	On the statics of fullerene structures. International Journal of Engineering Science, 2019, 142, 125-144.	5.0	38
42	Higher-order continuum theories for buckling response of silicon carbide nanowires (SiCNWs) on elastic matrix. Archive of Applied Mechanics, 2017, 87, 1797-1814.	2.2	36
43	INVESTIGATION OF SIZE EFFECTS ON STATIC RESPONSE OF SINGLE-WALLED CARBON NANOTUBES BASED ON STRAIN GRADIENT ELASTICITY. International Journal of Computational Methods, 2012, 09, 1240032.	1.3	33
44	On the deformation and frequency analyses of SARS-CoV-2 at nanoscale. International Journal of Engineering Science, 2022, 170, 103604.	5.0	29
45	On the shell model for human eye in Glaucoma disease. International Journal of Engineering Science, 2021, 158, 103414.	5.0	24
46	A new approach for bending analysis of bilayer conical graphene panels considering nonlinear van der Waals force. Composites Part B: Engineering, 2018, 150, 124-134.	12.0	18
47	On the mechanical analysis of microcrystalline cellulose sheets. International Journal of Engineering Science, 2021, 166, 103500.	5.0	17
48	On the generalized model of shell structures with functional cross-sections. Composite Structures, 2021, 272, 114192.	5.8	17
49	Static and dynamic response of sector-shaped graphene sheets. Mechanics of Advanced Materials and Structures, 2016, 23, 432-442.	2.6	16
50	Coordinate Transformation for Sector and Annular Sector Shaped Graphene Sheets on Silicone Matrix. International Journal of Engineering and Applied Sciences, 2015, 7, 56-56.	0.1	16
51	Parametric vibration of a dielectric elastomer microbeam resonator based on a hyperelastic cosserat continuum model. Composite Structures, 2022, 287, 115386.	5.8	16
52	Nonlocal thermoelastic vibration of a solid medium subjected to a pulsed heat flux via Caputo–Fabrizio fractional derivative heat conduction. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	15
53	Mechanical simulation of artificial gravity in torus-shaped and cylindrical spacecraft. Acta Astronautica, 2021, 179, 330-344.	3.2	13
54	Comment on "Static and dynamic analysis of micro beams based on strain gradient elasticity theory―by S. Kong, S. Zhou, Z. Nie, and K. Wang, (International Journal of Engineering Science, 47, 487–498, 2009). International Journal of Engineering Science, 2012, 50, 279-281.	5.0	10

Βεκις ΑκσöΖ

#	Article	IF	CITATIONS
55	Mechanical analysis of isolated microtubules based on a higher-order shear deformation beam theory. Composite Structures, 2014, 118, 9-18.	5.8	10
56	Dynamic Analysis of Functionally Graded Porous Microbeams under Moving Load. Transport in Porous Media, 0, , 1.	2.6	9
57	ELASTİK BİR MALZEME İLE TEMAS HALİNDE OLAN GRAFEN TABAKANIN TİTREŞİM HESABI. Journal of tl Engineering and Architecture of Gazi University, 2017, 32, .	ne Faculty 0.8	of ₈
58	A Novel Nonlinear Elasticity Approach for Analysis of Nonlinear and Hyperelastic Structures. Engineering Analysis With Boundary Elements, 2022, 143, 219-236.	3.7	8
59	Small size and rotary inertia effects on the natural frequencies of carbon nanotubes. Curved and Layered Structures, 2018, 5, 273-279.	1.3	7
60	Static analysis of beams on elastic foundation by the method of discrete singular convolution. International Journal of Engineering and Applied Sciences, 2016, 8, 67-67.	0.1	7
61	RİTZ YÖNTEMİ İLE DEĞİŞKEN KESİTLİ KOLONLARIN BURKULMA ANALİZİ. Mühendislik Bilimleri 2019, 7, 452-458.	Ve TasarÄ 0.3	±4 Dergisi,
62	Static analysis of laminated conical shells by Discrete Singular Convolution (DSC) approach. KSCE Journal of Civil Engineering, 2014, 18, 1455-1463.	1.9	2
63	Axial Vibration of Strain Gradient Micro-rods. , 2019, , 1141-1155.		1
64	Size-Dependent Transverse Vibration of Microbeams. , 2019, , 1123-1139.		0
65	Size-Dependent Transverse Vibration of Microbeams. , 2017, , 1-17.		0
66	Axial Vibration of Strain Gradient Micro-rods. , 2018, , 1-15.		0