
Hemant P Borase

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8184958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzymatic response of Moina macrocopa to different sized zinc oxide particles: An aquatic metal toxicology study. Environmental Research, 2021, 194, 110609.	7.5	11
2	Nano-eco toxicity study of gold nanoparticles on aquatic organism Moina macrocopa: As new versatile ecotoxicity testing model. Environmental Toxicology and Pharmacology, 2019, 68, 4-12.	4.0	16
3	A novel screening method for potential naringinaseâ€producing microorganisms. Biotechnology and Applied Biochemistry, 2019, 66, 323-327.	3.1	16
4	Moina macrocopa as a non-target aquatic organism for assessment of ecotoxicity of silver nanoparticles: Effect of size. Chemosphere, 2019, 219, 713-723.	8.2	16
5	Extracellular red Monascus pigment-mediated rapid one-step synthesis of silver nanoparticles and its application in biomedical and environment. Bioprocess and Biosystems Engineering, 2018, 41, 715-727.	3.4	21
6	Fabrication of Paper Sensor for Rapid Screening of Nanomaterial Synthesizing Potential of Plants. Journal of Cluster Science, 2018, 29, 737-742.	3.3	4
7	Mechanistic approach for fabrication of gold nanoparticles by NitzschiaÂdiatom and theirÂantibacterial activity. Bioprocess and Biosystems Engineering, 2017, 40, 1437-1446.	3.4	35
8	Monascus Pigments Mediated Rapid Green Synthesis and Characterization of Gold Nanoparticles with Possible Mechanism. Journal of Cluster Science, 2017, 28, 2719-2732.	3.3	12
9	Trypsin inactivation by latex fabricated gold nanoparticles: A new strategy towards insect control. Enzyme and Microbial Technology, 2016, 92, 18-25.	3.2	62
10	Use of protease inhibitory gold nanoparticles as a compatibility enhancer for Bt and deltamethrin: A novel approach for pest control. Biocatalysis and Agricultural Biotechnology, 2016, 8, 8-12.	3.1	3
11	Bio-Functionalized Silver Nanoparticles: a Novel Colorimetric Probe for Cysteine Detection. Applied Biochemistry and Biotechnology, 2015, 175, 3479-3493.	2.9	29
12	Mosquito larvicidal and pupaecidal potential of prodigiosin from Serratia marcescens and understanding its mechanism of action. Pesticide Biochemistry and Physiology, 2015, 123, 49-55.	3.6	49
13	Innovative approach for urease inhibition by <i>Ficus carica</i> extract–fabricated silver nanoparticles: An <i>in vitro</i> study. Biotechnology and Applied Biochemistry, 2015, 62, 780-784.	3.1	19
14	Effect of Different Carbon Sources on Morphology and Silver Accumulation in Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 2015, 177, 1409-1423.	2.9	4
15	Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk. Biotechnology and Applied Biochemistry, 2015, 62, 652-662.	3.1	25
16	Screening of Rubiaceae and Apocynaceae extracts for mosquito larvicidal potential. Natural Product Research, 2015, 29, 353-358.	1.8	11
17	Transformation of aromatic dyes using green synthesized silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 1695-1705.	3.4	22
18	Plant Extract: A Promising Biomatrix for Ecofriendly, Controlled Synthesis of Silver Nanoparticles. Applied Biochemistry and Biotechnology, 2014, 173, 1-29.	2.9	170

HEMANT P BORASE

#	Article	IF	CITATIONS
19	Studies on Production and Biological Potential of Prodigiosin by Serratia marcescens. Applied Biochemistry and Biotechnology, 2014, 173, 1209-1221.	2.9	72
20	Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles. Bioprocess and Biosystems Engineering, 2014, 37, 2223-2233.	3.4	18
21	Inhibition of restriction endonucleases by biofunctionalized silver nanoparticles: An in vitro study. Materials Letters, 2014, 134, 24-26.	2.6	5
22	Catalytic and synergistic antibacterial potential of green synthesized silver nanoparticles: Their ecotoxicological evaluation on <i>Poecillia reticulata</i> . Biotechnology and Applied Biochemistry, 2014, 61, 385-394.	3.1	12
23	Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae. Journal of Arthropod-Borne Diseases, 2014, 8, 91-101.	0.9	1
24	Alteration in Bacillus thuringiensis toxicity by curing gut flora: novel approach for mosquito resistance management. Parasitology Research, 2013, 112, 3283-3288.	1.6	39
25	Ficus carica Latex-Mediated Synthesis of Silver Nanoparticles and Its Application as a Chemophotoprotective Agent. Applied Biochemistry and Biotechnology, 2013, 171, 676-688.	2.9	28
26	Amoebicidal activity of phytosynthesized silver nanoparticles and their <i>in vitro</i> cytotoxicity to human cells. FEMS Microbiology Letters, 2013, 345, 127-131.	1.8	34
27	Phyto-Synthesized Silver Nanoparticles: A Potent Mosquito Biolarvicidal Agent. Journal of Nanomedicine & Biotherapeutic Discovery, 2013, 03, .	0.6	37
28	Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential. Applied Biochemistry and Biotechnology, 2012, 167, 776-790.	2.9	116
29	Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitology Research, 2012, 110, 1815-1822.	1.6	159
30	Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitology Research, 2012, 111, 555-562.	1.6	127