
Pierre Cordelier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8184807/publications.pdf Version: 2024-02-01

DIEDDE CODDELIED

#	Article	IF	CITATIONS
1	Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 153-168.	8.2	399
2	Adult Stromal Cells Derived from Human Adipose Tissue Provoke Pancreatic Cancer Cell Death both In Vitro and In Vivo. PLoS ONE, 2009, 4, e6278.	1.1	212
3	MicroRNA-21 Is Induced Early in Pancreatic Ductal Adenocarcinoma Precursor Lesions. Clinical Chemistry, 2010, 56, 603-612.	1.5	197
4	Targeting miR-21 for the Therapy of Pancreatic Cancer. Molecular Therapy, 2013, 21, 986-994.	3.7	197
5	Pharmacological targeting of the protein synthesis <scp>mTOR</scp> /4E― <scp>BP</scp> 1 pathway in cancerâ€associated fibroblasts abrogates pancreatic tumourÂchemoresistance. EMBO Molecular Medicine, 2015, 7, 735-753.	3.3	164
6	<i>let-7</i> MicroRNA Transfer in Pancreatic Cancer-Derived Cells Inhibits <i>In Vitro</i> Cell Proliferation but Fails to Alter Tumor Progression. Human Gene Therapy, 2009, 20, 831-844.	1.4	148
7	Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. European Journal of Cancer, 2016, 54, 75-83.	1.3	145
8	DNA Methylation and Cancer Diagnosis. International Journal of Molecular Sciences, 2013, 14, 15029-15058.	1.8	140
9	The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clinical Chemistry, 2010, 56, 1107-1118.	1.5	139
10	KRAS G12D Mutation Subtype Is A Prognostic Factor for Advanced Pancreatic Adenocarcinoma. Clinical and Translational Gastroenterology, 2016, 7, e157.	1.3	135
11	Characterization of the antiproliferative signal mediated by the somatostatin receptor subtype sst5. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 9343-9348.	3.3	131
12	Sporadic Early-Onset Colorectal Cancer Is a Specific Sub-Type of Cancer: A Morphological, Molecular and Genetics Study. PLoS ONE, 2014, 9, e103159.	1.1	119
13	Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Scientific Reports, 2017, 7, 42916.	1.6	110
14	Multicellular tumor spheroid model to evaluate spatio-temporal dynamics effect of chemotherapeutics: application to the gemcitabine/CHK1 inhibitor combination in pancreatic cancer. BMC Cancer, 2012, 12, 15.	1.1	108
15	Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97. 9180-9185.	3.3	106
16	Genetic and Epigenetic Alterations in Pancreatic Carcinogenesis. Current Genomics, 2011, 12, 15-24.	0.7	99
17	Salivary MicroRNA in Pancreatic Cancer Patients. PLoS ONE, 2015, 10, e0130996.	1.1	95
18	Signal transduction of somatostatin receptors negatively controlling cell proliferation. Journal of Physiology (Paris), 2000, 94, 205-210.	2.1	93

#	Article	IF	CITATIONS
19	First-in-man Phase 1 Clinical Trial of Gene Therapy for Advanced Pancreatic Cancer: Safety, Biodistribution, and Preliminary Clinical Findings. Molecular Therapy, 2015, 23, 779-789.	3.7	93
20	IL17 Functions through the Novel REG3β–JAK2–STAT3 Inflammatory Pathway to Promote the Transition from Chronic Pancreatitis to Pancreatic Cancer. Cancer Research, 2015, 75, 4852-4862.	0.4	92
21	Bioactivity and Prognostic Significance of Growth Differentiation Factor GDF15 Secreted by Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma. Cancer Research, 2012, 72, 1395-1406.	0.4	90
22	Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with <i>KRAS</i> mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy, 2009, 41, 552-557.	1.0	85
23	CRISPR/Cas9: Transcending the Reality of Genome Editing. Molecular Therapy - Nucleic Acids, 2017, 7, 211-222.	2.3	81
24	Enjoy the Silence: The Story of let-7 MicroRNA and Cancer. Current Genomics, 2007, 8, 229-233.	0.7	78
25	Expression and Function of Kruppel Like-Factors (KLF) in Carcinogenesis. Current Genomics, 2009, 10, 353-360.	0.7	73
26	KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis. Cell Death and Differentiation, 2007, 14, 1202-1210.	5.0	62
27	Endoscopic Ultrasound–guided Fine-Needle Aspiration Biopsy Coupled With a KRAS Mutation Assay Using Allelic Discrimination Improves the Diagnosis of Pancreatic Cancer. Journal of Clinical Gastroenterology, 2015, 49, 50-56.	1.1	57
28	Gene expression signature of advanced pancreatic ductal adenocarcinoma using low density array on endoscopic ultrasound-guided fine needle aspiration samples. Pancreatology, 2012, 12, 27-34.	0.5	56
29	Expression and Role of MicroRNAs from the miR-200 Family in the Tumor Formation and Metastatic Propensity of Pancreatic Cancer. Molecular Therapy - Nucleic Acids, 2019, 17, 491-503.	2.3	54
30	Liquid Biopsy Approach for Pancreatic Ductal Adenocarcinoma. Cancers, 2019, 11, 852.	1.7	53
31	The Emerging Role of Cytidine Deaminase in Human Diseases: A New Opportunity for Therapy?. Molecular Therapy, 2020, 28, 357-366.	3.7	53
32	Targeting CCR5 with siRNAs: Using Recombinant SV40-Derived Vectors to Protect Macrophages and Microglia from R5-Tropic HIV. Oligonucleotides, 2003, 13, 281-294.	2.7	50
33	Identification of an Upstream Promoter of the Human Somatostatin Receptor, hSSTR2, Which Is Controlled by Epigenetic Modifications. Endocrinology, 2008, 149, 3137-3147.	1.4	42
34	Neuronal nitric oxide synthase is a SHPâ€l substrate involved in sst2 somatostatin receptor growth inhibitory signaling. FASEB Journal, 2001, 15, 1-25.	0.2	41
35	Tie1 deficiency induces endothelial–mesenchymal transition. EMBO Reports, 2012, 13, 431-439.	2.0	41
36	Gene Therapy Based on Gemcitabine Chemosensitization Suppresses Pancreatic Tumor Growth. Molecular Therapy, 2006, 14, 758-767.	3.7	40

#	Article	IF	CITATIONS
37	MicroRNAs as emerging biomarkers and therapeutic targets for pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 11199.	1.4	40
38	Inhibiting AIDS in the central nervous system: gene delivery to protect neurons from HIV. Molecular Therapy, 2003, 7, 801-810.	3.7	39
39	Protecting from R5-tropic HIV: individual and combined effectiveness of a hammerhead ribozyme and a single-chain Fv antibody that targets CCR5. Gene Therapy, 2004, 11, 1627-1637.	2.3	36
40	miRNA in clinical practice: Pancreatic cancer. Clinical Biochemistry, 2013, 46, 933-936.	0.8	36
41	Role of endoscopic ultrasound in the molecular diagnosis of pancreatic cancer. World Journal of Gastroenterology, 2014, 20, 10758.	1.4	35
42	Characterization of the Bystander Effect of Somatostatin Receptor sst2 After In Vivo Gene Transfer into Human Pancreatic Cancer Cells. Human Gene Therapy, 2005, 16, 1175-1193.	1.4	34
43	The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. Journal of Hepatology, 2010, 53, 880-888.	1.8	32
44	Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. International Journal of Molecular Sciences, 2017, 18, 1231.	1.8	31
45	Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti–PD-1 Therapy Efficacy. Cancer Immunology Research, 2021, 9, 568-582.	1.6	30
46	The activation of neuronal NO synthase is mediated by Gâ€protein βγ subunit and the tyrosine phosphatase SHPâ€2. FASEB Journal, 1999, 13, 2037-2050.	0.2	28
47	Using lentiviral vectors for efficient pancreatic cancer gene therapy. Cancer Gene Therapy, 2010, 17, 315-324.	2.2	28
48	HIV-1 proprotein processing as a target for gene therapy. Gene Therapy, 2003, 10, 467-477.	2.3	26
49	Gene Therapy Using a Simian Virus 40–Derived Vector Inhibits the Development of In Vivo Human Immunodeficiency Virus Type 1 Infection of Severe Combined Immunodeficiency Mice Implanted with Human Fetal Thymic and Liver Tissue. Journal of Infectious Diseases, 2002, 185, 1425-1430.	1.9	25
50	Targeted Oncolytic Herpes Simplex Virus Type 1 Eradicates Experimental Pancreatic Tumors. Human Gene Therapy, 2015, 26, 104-113.	1.4	25
51	Endoscopic ultrasound-guided fine-needle aspiration plus KRAS and GNAS mutation in malignant intraductal papillary mucinous neoplasm of the pancreas. Endoscopy International Open, 2016, 04, E1228-E1235.	0.9	25
52	Technological Challenges and Future Issues for the Detection of Circulating MicroRNAs in Patients With Cancer. Frontiers in Chemistry, 2019, 7, 815.	1.8	24
53	SV40-derived vectors provide effective transgene expression and inhibition of HIV-1 using constitutive, conditional,and pol III promoters. Gene Therapy, 2001, 8, 1033-1042.	2.3	22
54	The Rescue of miR-148a Expression in Pancreatic Cancer: An Inappropriate Therapeutic Tool. PLoS ONE, 2013, 8, e55513.	1.1	22

#	Article	IF	CITATIONS
55	The E3 ubiquitin ligase TRIP12 participates in cell cycle progression and chromosome stability. Scientific Reports, 2020, 10, 789.	1.6	21
56	What they are, How they Work and Why they do What they do? The Story of SV40-derived Gene Therapy Vectors and What They Have to Offer. Current Gene Therapy, 2005, 5, 151-165.	0.9	20
57	The E3 Ubiquitin Ligase Thyroid Hormone Receptor-interacting Protein 12 Targets Pancreas Transcription Factor 1a for Proteasomal Degradation. Journal of Biological Chemistry, 2014, 289, 35593-35604.	1.6	20
58	Regulation of Neuronal Nitric-oxide Synthase Activity by Somatostatin Analogs following SST5 Somatostatin Receptor Activation. Journal of Biological Chemistry, 2006, 281, 19156-19171.	1.6	19
59	Expression of the transcription factor <i>Klf6</i> in cirrhosis, macronodules, and hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 78-86.	1.4	19
60	Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Molecular Medicine, 2021, 13, e13502.	3.3	19
61	Treatment of experimental murine pancreatic peritoneal carcinomatosis with fibroblasts genetically modified to express IL12: a role for peritoneal innate immunity. Gut, 2007, 56, 107-114.	6.1	18
62	Replication-deficient rSV40 mediate pancreatic gene transfer and long-term inhibition of tumor growth. Cancer Gene Therapy, 2007, 14, 19-29.	2.2	18
63	Mechanisms of α1-antitrypsin inhibition of cellular serine proteases and HIV-1 protease that are essential for HIV-1 morphogenesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1638, 197-207.	1.8	16
64	Inhibition of HIV-1 in the Central Nervous System by IFN-α2 Delivered by an SV40 Vector. Journal of Interferon and Cytokine Research, 2003, 23, 477-488.	0.5	16
65	Regulation of Membrane Cholecystokinin-2 Receptor by Agonists Enables Classification of Partial Agonists as Biased Agonists. Journal of Biological Chemistry, 2011, 286, 6707-6719.	1.6	15
66	Pancreatic preneoplastic lesions plasma signatures and biomarkers based on proteome profiling of mouse models. British Journal of Cancer, 2015, 113, 1590-1598.	2.9	15
67	Regulating the expression of therapeutic transgenes by controlled intake of dietary essential amino acids. Nature Biotechnology, 2016, 34, 746-751.	9.4	15
68	Using gene delivery to protect HIV-susceptible CNS cells: Inhibiting HIV replication in microglia. Virus Research, 2006, 118, 87-97.	1.1	14
69	Conditional expression of $\hat{l}\pm 1$ -antitrypsin delivered by recombinant SV40 vectors protects lymphocytes against HIV. Gene Therapy, 2003, 10, 2153-2156.	2.3	13
70	The Promise of Gene Therapy for Pancreatic Cancer. Human Gene Therapy, 2016, 27, 127-133.	1.4	13
71	Spatial Analysis of Nanofluidic-Embedded Biosensors for Wash-Free Single-Nucleotide Difference Discrimination. ACS Sensors, 2018, 3, 606-611.	4.0	13
72	Trans-Activated Interferon-α2 Delivered to T Cells by SV40 Inhibits Early Stages in the HIV-1 Replicative Cycle. Journal of Hematotherapy and Stem Cell Research, 2002, 11, 817-828.	1.8	12

#	Article	IF	CITATIONS
73	KRAS Mutations and Their Correlation With Survival of Patients With Advanced Pancreatic Cancer. Pancreas, 2013, 42, 543-544.	0.5	12
74	Long-Term Gene Expression in Dividing and Nondividing Cells Using SV40-Derived Vectors. Molecular Biotechnology, 2006, 34, 257-270.	1.3	10
75	MicroRNA Analysis: Is It Ready for Prime Time?. Clinical Chemistry, 2013, 59, 343-347.	1.5	10
76	Microfluidics for minute DNA sample analysis: open challenges for genetic testing of cell-free circulating DNA in blood plasma. Micro and Nano Engineering, 2018, 1, 25-32.	1.4	8
77	Initial Characterization of Integrase-Defective Lentiviral Vectors for Pancreatic Cancer Gene Therapy. Human Gene Therapy, 2016, 27, 184-192.	1.4	7
78	Antibody-Based Approaches to Target Pancreatic Tumours. Antibodies, 2022, 11, 47.	1.2	7
79	Conditional Expression of IFN-α and IFN-Î ³ Activated by HBV as Genetic Therapy for Hepatitis B. Journal of Interferon and Cytokine Research, 2003, 23, 709-721.	0.5	6
80	Molecular Endoscopic Ultrasound for Diagnosis of Pancreatic Cancer. Cancers, 2011, 3, 872-882.	1.7	6
81	REG3β Plays a Key Role in IL17RA Protumoral Effect—Response. Cancer Research, 2016, 76, 2051-2051.	0.4	5
82	A Novel Imaging Approach for Single-Cell Real-Time Analysis of Oncolytic Virus Replication and Efficacy in Cancer Cells. Human Gene Therapy, 2021, 32, 166-177.	1.4	5
83	micro-RNA 21 detection with a limit of 2 pM in 1Âmin using a size-accordable concentration module operated by electrohydrodynamic actuation. Biosensors and Bioelectronics, 2021, 178, 112992.	5.3	5
84	The Role of the 3' Untranslated Region in the Post-Transcriptional Regulation of KLF6 Gene Expression in Hepatocellular Carcinoma. Cancers, 2014, 6, 28-41.	1.7	4
85	The antitumoral activity of TLR7 ligands is corrupted by the microenvironment of pancreatic tumors. Molecular Therapy, 2022, 30, 1553-1563.	3.7	3
86	Using new gene delivery systems to advance HIV gene therapy. Clinical and Applied Immunology Reviews, 2003, 3, 247-259.	0.4	2
87	Potential of Recombinant SV40-Based Vectors for Gene Therapy. Recent Patents on DNA & Gene Sequences, 2007, 1, 93-9.	0.7	2
88	Hopes, Promises, and Future Directions of Gene and Cell Therapies in France. Human Gene Therapy, 2016, 27, 96-97.	1.4	2
89	Le cancer du pancréas. Bulletin De L'Academie Nationale De Medecine, 2012, 196, 1819-1828.	0.0	2
90	Role of nitric oxide in the antiproliferative signal mediated by the somatostatin receptor sst5. Gastroenterology, 1998, 114, A1136.	0.6	1

#	Article	IF	CITATIONS
91	Virus-based vectors for gene expression in mammalian cells: SV40. New Comprehensive Biochemistry, 2003, 38, 71-91.	0.1	1
92	Proper sister chromatid disjunction requires CDA and PARP-1. Cell Cycle, 2017, 16, 1239-1240.	1.3	1
93	Keep Quiet and Stay in Line! Smart Polymers to Keep an Eye on Pancreatic Tumors. Molecular Therapy, 2018, 26, 940-941.	3.7	1
94	One Two Punch: Combination Chemotherapy Knocks Out Pancreatic Cancer. Molecular Therapy, 2020, 28, 1751-1752.	3.7	1
95	MicroRNAs in Pancreatic Cancer: Potential Interests as Biomarkers and Therapeutic Tools. , 2011, , 287-307.		1
96	R115: Ciblage des microARNs oncogéniques pour la thérapie du cancer pancréatique. Bulletin Du Cancer, 2010, 97, S60.	0.6	0
97	R89 - Oral: L'expertise toxicologique d'un nouvel agent thérapeutique anticancéreux issu de la biotechnologie en vue de sa premiÃïre administration à l'homme. Bulletin Du Cancer, 2010, 97, S51.	0.6	Ο
98	Characterization of the Bystander Effect of Somatostatin Receptor sst2 After In Vivo Gene Transfer into Human Pancreatic Cancer Cells. Human Gene Therapy, 2005, .	1.4	0
99	Abstract 3532A: Development of gene therapy for pancreatic carcinoma: from experimental models to phase I clinical trial , 2013, , .		Ο
100	Modulating MicroRNA Expression for the Therapy of Pancreatic Cancer. , 2014, , 189-197.		0
101	Abstract B96: Non-viral gene therapy for pancreatic cancer, from preclinical models to phase II clinical trial. , 2015, , .		Ο
102	Abstract A23: Characterization of novel molecular vulnerabilities provoking replicative and energetic stresses in pancreatic cancer cells. , 2016, , .		0