Tod A Pascal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8184503/publications.pdf

Version: 2024-02-01

218677 233421 2,989 46 26 45 h-index citations g-index papers 47 47 47 4250 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oxidative Stabilization of Dilute Ether Electrolytes via Anion Modification. ACS Energy Letters, 2022, 7, 675-682.	17.4	15
2	Complete inhibition of a polyol nucleation by a micromolar biopolymer additive. Cell Reports Physical Science, 2022, 3, 100723.	5.6	3
3	Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy and Environmental Science, 2022, 15, 1647-1658.	30.8	89
4	Ferroelectric Modulation of Surface Electronic States in BaTiO ₃ for Enhanced Hydrogen Evolution Activity. Nano Letters, 2022, 22, 4276-4284.	9.1	13
5	Predicting the Ion Desolvation Pathway of Lithium Electrolytes and Their Dependence on Chemistry and Temperature. Journal of Physical Chemistry Letters, 2022, 13, 4426-4433.	4.6	12
6	Solvent selection criteria for temperature-resilient lithium–sulfur batteries. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
7	Ultrahigh coulombic efficiency electrolyte enables Li SPAN batteries with superior cycling performance. Materials Today, 2021, 42, 17-28.	14.2	50
8	Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy, 2021, 6, 303-313.	39.5	386
9	Dimensionality dependence of the Kauzmann temperature: A case study using bulk and confined water. Journal of Chemical Physics, 2021, 154, 164510.	3.0	5
10	Table-top extreme ultraviolet second harmonic generation. Science Advances, 2021, 7, .	10.3	26
11	Sub-nanometer confinement enables facile condensation of gas electrolyte for low-temperature batteries. Nature Communications, 2021, 12, 3395.	12.8	42
12	Stereoselective Growth of Small Molecule Patches on Nanoparticles. Journal of the American Chemical Society, 2021, 143, 12138-12144.	13.7	30
13	Extreme Ultraviolet Second Harmonic Generation Spectroscopy in a Polar Metal. Nano Letters, 2021, 21, 6095-6101.	9.1	17
14	The phase diagram of carbon dioxide from correlation functions and a many-body potential. Journal of Chemical Physics, 2021, 155, 024503.	3.0	0
15	Angstrom-Resolved Interfacial Structure in Buried Organic-Inorganic Junctions. Physical Review Letters, 2021, 127, 096801.	7.8	14
16	Entropic Stabilization of Water at Graphitic Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 9162-9168.	4.6	5
17	A low-cost sulfate-based all iron redox flow battery. Journal of Power Sources, 2021, 513, 230457.	7.8	18

Polarization-Resolved Extreme-Ultraviolet Second-Harmonic Generation from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn></mml:mrow><mml:mrow><mml:mn></mml:mn></mml:mrow><mml:mrow><mml:mn></mml:mn></mml:mrow><mml:mrow><mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:m

#	Article	IF	CITATIONS
19	An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation. ACS Energy Letters, 2020, 5, 1438-1447.	17.4	214
20	Nuclear Quantum Effects in Hydrophobic Nanoconfinement. Journal of Physical Chemistry Letters, 2019, 10, 5530-5535.	4.6	26
21	The purported square ice in bilayer graphene is a nanoscale, monolayer object. Journal of Chemical Physics, 2019, 150, 231101.	3.0	7
22	pH-Dependent Conformations for Hyperbranched Poly(ethylenimine) from All-Atom Molecular Dynamics. Macromolecules, 2018, 51, 2187-2194.	4.8	20
23	Universal Relationship between Molecular Structure and Crystal Structure in Peptoid Polymers and Prevalence of the <i>cis</i> Backbone Conformation. Journal of the American Chemical Society, 2018, 140, 827-833.	13.7	52
24	Rate Constants of Electrochemical Reactions in a Lithium-Sulfur Cell Determined by Operando X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2018, 165, A3487-A3495.	2.9	20
25	Molecular-Scale Structure of Electrode–Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. Journal of the American Chemical Society, 2018, 140, 16237-16244.	13.7	32
26	Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles. Physical Chemistry Chemical Physics, 2017, 19, 1441-1448.	2.8	41
27	Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects. Nano Letters, 2017, 17, 2517-2523.	9.1	16
28	Multilayer Two-Dimensional Water Structure Confined in MoS ₂ . Journal of Physical Chemistry C, 2017, 121, 16021-16028.	3.1	35
29	Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nature Communications, 2017, 8, 2277.	12.8	117
30	Characterization of Polysulfide Radicals Present in an Etherâ€Based Electrolyte of a Lithium–Sulfur Battery During Initial Discharge Using In Situ Xâ€Ray Absorption Spectroscopy Experiments and Firstâ€Principles Calculations. Advanced Energy Materials, 2015, 5, 1500285.	19.5	107
31	Polysulfide-Blocking Microporous Polymer Membrane Tailored for Hybrid Li-Sulfur Flow Batteries. Nano Letters, 2015, 15, 5724-5729.	9.1	153
32	X-ray spectroscopy as a probe for lithium polysulfide radicals. Physical Chemistry Chemical Physics, 2015, 17, 7743-7753.	2.8	43
33	The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science, 2014, 346, 831-834.	12.6	391
34	X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles. Journal of Physical Chemistry Letters, 2014, 5, 1547-1551.	4.6	134
35	Interfacial Thermodynamics of Water and Six Other Liquid Solvents. Journal of Physical Chemistry B, 2014, 118, 5943-5956.	2.6	32
36	Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2014, 161, A1100-A1106.	2.9	76

#	Article	IF	CITATION
37	Hydrophobic Segregation, Phase Transitions and the Anomalous Thermodynamics of Water/Methanol Mixtures. Journal of Physical Chemistry B, 2012, 116, 13905-13912.	2.6	46
38	On the absolute thermodynamics of water from computer simulations: A comparison of first-principles molecular dynamics, reactive and empirical force fields. Journal of Chemical Physics, 2012, 137, 244507.	3.0	59
39	Role of Specific Cations and Water Entropy on the Stability of Branched DNA Motif Structures. Journal of Physical Chemistry B, 2012, 116, 12159-12167.	2.6	17
40	The Role of Confined Water in Ionic Liquid Electrolytes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 556-559.	4.6	36
41	Entropy and the driving force for the filling of carbon nanotubes with water. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11794-11798.	7.1	287
42	Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model. Journal of Chemical Theory and Computation, 2011, 7, 1893-1901.	5.3	44
43	Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics. Physical Chemistry Chemical Physics, 2011, 13, 169-181.	2.8	144
44	Experimental Validation of the Predicted Binding Site of Escherichia coli K1 Outer Membrane Protein A to Human Brain Microvascular Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 37753-37761.	3.4	30
45	Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite. Journal of Chemical Physics, 2010, 133, 134114.	3.0	18
46	Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis. Biochemistry, 2009, 48, 9696-9703.	2.5	35