
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8183709/publications.pdf

Version: 2024-02-01



MÃ:DIO LE CALVETE

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nonlinear Optical Materials for the Smart Filtering of Optical Radiation. Chemical Reviews, 2016, 116, 13043-13233.                                                                              | 23.0 | 472       |
| 2  | Porphyrins and phthalocyanines as materials for optical limiting. Synthetic Metals, 2004, 141, 231-243.                                                                                          | 2.1  | 417       |
| 3  | Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordination Chemistry Reviews, 2019, 395, 63-85.                                                                  | 9.5  | 141       |
| 4  | Synthesis of binaphthyl based phosphine and phosphite ligands. Chemical Society Reviews, 2013, 42, 6990.                                                                                         | 18.7 | 138       |
| 5  | Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catalysis, 2018, 8, 10784-10808.                                                                                                         | 5.5  | 122       |
| 6  | Immobilized Catalysts for Hydroformylation Reactions: A Versatile Tool for Aldehyde Synthesis.<br>European Journal of Organic Chemistry, 2012, 2012, 6309-6320.                                  | 1.2  | 74        |
| 7  | Conjugating biomaterials with photosensitizes: advancers and perspectives for photodynamic antimicrobial chemotherapy. Photochemical and Photobiological Sciences, 2020, 19, 445-461.            | 1.6  | 72        |
| 8  | Metal coordinated pyrrole-based macrocycles as contrast agents for magnetic resonance imaging technologies: Synthesis and applications. Coordination Chemistry Reviews, 2017, 333, 82-107.       | 9.5  | 66        |
| 9  | The first example of anomeric glycoconjugation to phthalocyanines. Tetrahedron Letters, 2006, 47, 3283-3286.                                                                                     | 0.7  | 64        |
| 10 | Inorganic helping organic: recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports. RSC Advances, 2013, 3, 22774.        | 1.7  | 62        |
| 11 | Metal-based redox-responsive MRI contrast agents. Coordination Chemistry Reviews, 2019, 390, 1-31.                                                                                               | 9.5  | 59        |
| 12 | Zinc(II) phthalocyanines immobilized in mesoporous silica Al-MCM-41 and their applications in photocatalytic degradation of pesticides. Journal of Hazardous Materials, 2012, 233-234, 79-88.    | 6.5  | 54        |
| 13 | An insight into solvent-free diimide porphyrin reduction: a versatile approach for meso-aryl<br>hydroporphyrin synthesis. Green Chemistry, 2012, 14, 1666.                                       | 4.6  | 50        |
| 14 | Synthesis of a Bisphthalocyanine and Its Nonlinear Optical Properties. European Journal of Organic<br>Chemistry, 2005, 2005, 3499-3509.                                                          | 1.2  | 49        |
| 15 | Self-Healing of Gold Nanoparticles in the Presence of Zinc Phthalocyanines and Their Very Efficient<br>Nonlinear Absorption Performances. Journal of Physical Chemistry C, 2009, 113, 8688-8695. | 1.5  | 46        |
| 16 | Amphiphilic meso(sulfonate ester fluoroaryl)porphyrins: refining the substituents of porphyrin derivatives for phototherapy and diagnostics. Tetrahedron, 2012, 68, 8767-8772.                   | 1.0  | 44        |
| 17 | Ecofriendly Porphyrin Synthesis by using Water under Microwave Irradiation. ChemSusChem, 2014, 7, 2821-2824.                                                                                     | 3.6  | 44        |
| 18 | Optical detection of amine vapors using ZnTriad porphyrin thin films. Sensors and Actuators B:<br>Chemical, 2015, 210, 28-35.                                                                    | 4.0  | 44        |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phthalocyanine Labels for Near-Infrared Fluorescence Imaging of Solid Tumors. Journal of Medicinal<br>Chemistry, 2016, 59, 4688-4696.                                                                                                                | 2.9 | 43        |
| 20 | Hydrogen Peroxide and Metalloporphyrins in Oxidation Catalysis: Old Dogs with Some New Tricks.<br>ChemCatChem, 2018, 10, 3615-3635.                                                                                                                  | 1.8 | 42        |
| 21 | Nonlinear Transmission of a Tetrabrominated Naphthalocyaninato Indium Chloride. Journal of<br>Physical Chemistry B, 2006, 110, 12230-12239.                                                                                                          | 1.2 | 39        |
| 22 | A Binuclear Phthalocyanine Containing Two Different Metals. European Journal of Organic Chemistry, 2003, 2080-2083.                                                                                                                                  | 1.2 | 38        |
| 23 | Halogenated meso-phenyl Mn(III) porphyrins as highly efficient catalysts for the synthesis of polycarbonates and cyclic carbonates using carbon dioxide and epoxides. Journal of Molecular Catalysis A, 2016, 423, 489-494.                          | 4.8 | 38        |
| 24 | Axial Halogen Ligand Effect on Photophysics and Optical Power Limiting of Some Indium<br>Naphthalocyanines. Journal of Physical Chemistry A, 2007, 111, 3263-3270.                                                                                   | 1.1 | 37        |
| 25 | Large Two-Photon Absorption Cross Sections of Hemiporphyrazines in the Excited State: The<br>Multiphoton Absorption Process of Hemiporphyrazines with Different Central Metals. Journal of the<br>American Chemical Society, 2008, 130, 12290-12298. | 6.6 | 37        |
| 26 | Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated<br>meso-phenyl porphyrins catalysed by porous solid oxides. Chemical Communications, 2014, 50,<br>6571-6573.                                 | 2.2 | 37        |
| 27 | Indium Phthalocyanines with Different Axial Ligands: A Study of the Influence of the Structure on the<br>Photophysics and Optical Limiting Properties. Journal of Physical Chemistry A, 2008, 112, 8515-8522.                                        | 1.1 | 36        |
| 28 | Photoinactivation of microorganisms with sub-micromolar concentrations of imidazolium metallophthalocyanine salts. European Journal of Medicinal Chemistry, 2019, 184, 111740.                                                                       | 2.6 | 36        |
| 29 | Near-infrared absorbing organic materials with nonlinear transmission properties. International<br>Reviews in Physical Chemistry, 2012, 31, 319-366.                                                                                                 | 0.9 | 35        |
| 30 | Phthalocyanines: An Old Dog Can Still Have New (Photo)Tricks!. Molecules, 2021, 26, 2823.                                                                                                                                                            | 1.7 | 35        |
| 31 | Synthesis of New Metalloporphyrin Triads: Efficient and Versatile Tripod Optical Sensor for the Detection of Amines. Inorganic Chemistry, 2011, 50, 7916-7918.                                                                                       | 1.9 | 34        |
| 32 | Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO <sub>2</sub> into Cyclic Carbonates. ChemCatChem, 2018, 10, 2792-2803.                                                                   | 1.8 | 34        |
| 33 | Photophysics and Nonlinear Optical Properties of Tetra- and Octabrominated Silicon<br>Naphthalocyanines. Journal of Physical Chemistry A, 2008, 112, 472-480.                                                                                        | 1.1 | 33        |
| 34 | Tetrabrominated Lead Naphthalocyanine for Optical Power Limiting. Chemistry - A European Journal,<br>2010, 16, 1212-1220.                                                                                                                            | 1.7 | 33        |
| 35 | Metalloporphyrin triads: Synthesis and photochemical characterization. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 242, 59-66.                                                                                                    | 2.0 | 33        |
| 36 | Synthesis of <i>meso</i> -substituted porphyrins using sustainable chemical processes. Journal of<br>Porphyrins and Phthalocyanines, 2016, 20, 45-60.                                                                                                | 0.4 | 32        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy<br>Application. Frontiers in Microbiology, 2020, 11, 606185.                                                     | 1.5  | 32        |
| 38 | Tetrapyrrolic Macrocycles: Potentialities in Medical Imaging Technologies. Current Organic<br>Synthesis, 2014, 11, 127-140.                                                                                        | 0.7  | 32        |
| 39 | A new glycosidation method through nitrite displacement on substituted nitrobenzenes.<br>Carbohydrate Research, 2007, 342, 440-447.                                                                                | 1.1  | 31        |
| 40 | Energy transfer from fluoreneâ€based conjugated polyelectrolytes to onâ€chain and selfâ€assembled<br>porphyrin units. Journal of Polymer Science Part A, 2012, 50, 1408-1417.                                      | 2.5  | 30        |
| 41 | Biologically Inspired and Magnetically Recoverable Copper Porphyrinic Catalysts: A Greener Approach<br>for Oxidation of Hydrocarbons with Molecular Oxygen. Advanced Functional Materials, 2016, 26,<br>3359-3368. | 7.8  | 30        |
| 42 | Analysis of the nonlinear transmission properties of some naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1165-1171.                                                                       | 0.4  | 28        |
| 43 | Synthesis, DFT calculations, linear and nonlinear optical properties of binuclear phthalocyanine gallium chloride. Journal of Molecular Modeling, 2006, 12, 543-550.                                               | 0.8  | 27        |
| 44 | Demonstration of the optical limiting effect for an hemiporphyrazine. Chemical Communications, 2006, , 2394.                                                                                                       | 2.2  | 26        |
| 45 | Recent developments in the synthesis of homo- and heteroarrays of porphyrins and phthalocyanines.<br>Journal of Porphyrins and Phthalocyanines, 2009, 13, 419-428.                                                 | 0.4  | 26        |
| 46 | The quest for biocompatible phthalocyanines for molecular imaging: Photophysics, relaxometry and cytotoxicity studies. Journal of Inorganic Biochemistry, 2016, 154, 50-59.                                        | 1.5  | 24        |
| 47 | A biocompatible redox MRI probe based on a Mn( <scp>ii</scp> )/Mn( <scp>iii</scp> ) porphyrin. Dalton<br>Transactions, 2019, 48, 3249-3262.                                                                        | 1.6  | 24        |
| 48 | Synthesis of a new <sup>18</sup> F labeled porphyrin for potential application in positron emission tomography. In vivo imaging and cellular uptake. RSC Advances, 2015, 5, 99540-99546.                           | 1.7  | 23        |
| 49 | Supported metalloporphyrins as reusable catalysts for the degradation of antibiotics: Synthesis,<br>characterization, activity and ecotoxicity studies. Applied Catalysis B: Environmental, 2021, 282, 119556.     | 10.8 | 23        |
| 50 | Rhodium(I) N-Heterocyclic Carbene Complexes as Catalysts for Hydroformylation of Olefins: An<br>Overview. Current Organic Synthesis, 2011, 8, 764-775.                                                             | 0.7  | 23        |
| 51 | Octatosylaminophthalocyanine: A reusable chromogenic anion chemosensor. Sensors and Actuators<br>B: Chemical, 2014, 201, 387-394.                                                                                  | 4.0  | 21        |
| 52 | Unsymmetrical porphyrins: the role of meso-substituents on their physical properties. Journal of<br>Porphyrins and Phthalocyanines, 2012, 16, 290-296.                                                             | 0.4  | 20        |
| 53 | Microwave irradiation as a sustainable tool for catalytic carbonylation reactions. Inorganica Chimica Acta, 2017, 455, 364-377.                                                                                    | 1.2  | 20        |
| 54 | Molecular-based selection of porphyrins towards the sensing of explosives in the gas phase. Sensors and Actuators B: Chemical, 2018, 260, 116-124.                                                                 | 4.0  | 20        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and Functionalization of Corroles. An Insight on Their Nonlinear Optical Absorption Properties. Current Organic Synthesis, 2014, 11, 29-41.                                                                                 | 0.7 | 20        |
| 56 | A recyclable hybrid manganese(III) porphyrin magnetic catalyst for selective olefin epoxidation using molecular oxygen. Journal of Porphyrins and Phthalocyanines, 2018, 22, 331-341.                                                 | 0.4 | 19        |
| 57 | Solventless metallation of low melting porphyrins synthesized by the water/microwave method. RSC Advances, 2015, 5, 64902-64910.                                                                                                      | 1.7 | 18        |
| 58 | Synthesis and high ranked NLT properties of new sulfonamide-substituted indium phthalocyanines.<br>Inorganica Chimica Acta, 2010, 363, 3945-3950.                                                                                     | 1.2 | 17        |
| 59 | Photophysical and Antibacterial Properties of Porphyrins Encapsulated inside Acetylated Lignin<br>Nanoparticles. Antibiotics, 2021, 10, 513.                                                                                          | 1.5 | 17        |
| 60 | Oxidative Degradation of Pharmaceuticals: The Role of Tetrapyrrole-Based Catalysts. Catalysts, 2021, 11, 1335.                                                                                                                        | 1.6 | 17        |
| 61 | Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes. Nanoscale, 2020, 12, 20831-20839.                                                                                           | 2.8 | 16        |
| 62 | A Cost-Efficient Method for Unsymmetrical Meso-Aryl Porphyrin Synthesis Using NaY Zeolite as an<br>Inorganic Acid Catalyst. Molecules, 2017, 22, 741.                                                                                 | 1.7 | 15        |
| 63 | Conjugated macrocyclic materials with photoactivated optical absorption for the control of energy transmission delivered by pulsed radiations. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 56-73. | 5.6 | 15        |
| 64 | Binol derivative ligand immobilized onto silica: Alkyl-cyanohydrin synthesis via sequential<br>hydroformylation/heterogeneous cyanosilylation reactions. Catalysis Today, 2013, 218-219, 99-106.                                      | 2.2 | 13        |
| 65 | Glycosylated Metal Phthalocyanines. Current Organic Synthesis, 2014, 11, 59-66.                                                                                                                                                       | 0.7 | 13        |
| 66 | Cost-efficient method for unsymmetrical meso-aryl porphyrins and iron oxide-porphyrin hybrids prepared thereof. Dalton Transactions, 2016, 45, 16211-16220.                                                                           | 1.6 | 13        |
| 67 | Synthesis of sulfonamide-substituted phthalocyanines. Tetrahedron Letters, 2009, 50, 6882-6885.                                                                                                                                       | 0.7 | 12        |
| 68 | Routes to synthesis of porphyrins covalently bound to poly(carbazole)s and poly(fluorene)s:<br>Structural and computational studies on oligomers. Journal of Molecular Structure, 2012, 1029,<br>199-208.                             | 1.8 | 11        |
| 69 | Microwave Assisted Reactions of Natural Oils: Transesterification and<br>Hydroformylation/Isomerization as Tools for High Value Compounds. Current Microwave Chemistry,<br>2015, 2, 53-60.                                            | 0.2 | 11        |
| 70 | Bioinspired-Metalloporphyrin Magnetic Nanocomposite as a Reusable Catalyst for Synthesis of<br>Diastereomeric (â^')-lsopulegol Epoxide: Anticancer Activity Against Human Osteosarcoma Cells (MG-63).<br>Molecules, 2019, 24, 52.     | 1.7 | 11        |
| 71 | Synthesis of a Rigid Fused Porphyrin-Phthalocyanine Hetero-Dyad with Two Different Metals. Current<br>Organic Chemistry, 2013, 17, 1103-1107.                                                                                         | 0.9 | 10        |
| 72 | Titanium Phthalocyanines with Axial Phenylenevinylenes. European Journal of Organic Chemistry, 2008. 2008. 3209-3214.                                                                                                                 | 1.2 | 9         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis and Characterization of New Crossâ€ŀike Porphyrin–Naphthalocyanine and<br>Porphyrin–Phthalocyanine Pentads. Journal of Heterocyclic Chemistry, 2014, 51, E202.                                         | 1.4 | 9         |
| 74 | Synthesis of low melting point porphyrins: A quest for new materials. Journal of Porphyrins and Phthalocyanines, 2016, 20, 843-854.                                                                              | 0.4 | 9         |
| 75 | Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation<br>Catalysts. Catalysts, 2020, 10, 1402.                                                                                | 1.6 | 9         |
| 76 | Supercritical antisolvent precipitation of calcium acetate from eggshells. Journal of Supercritical Fluids, 2020, 163, 104862.                                                                                   | 1.6 | 9         |
| 77 | Water soluble near infrared dyes based on PEGylated-Tetrapyrrolic macrocycles. Dyes and Pigments, 2021, 195, 109677.                                                                                             | 2.0 | 9         |
| 78 | Synthesis and characterization of biocompatible bimodal<br>meso-sulfonamide-perfluorophenylporphyrins. Journal of Fluorine Chemistry, 2015, 180, 161-167.                                                        | 0.9 | 8         |
| 79 | Synthesis of Pyrrole-Based Macrocycles as Molecular Probes for Multimodal Imaging Techniques:<br>Recent Trends. Current Organic Synthesis, 2017, 14, .                                                           | 0.7 | 8         |
| 80 | Expeditious Synthesis of Glycosylated Phthalocyanines. Synthesis, 2007, 2007, 2186-2192.                                                                                                                         | 1.2 | 7         |
| 81 | Biocompatible ring-deformed indium phthalocyanine label for near-infrared photoacoustic imaging.<br>Inorganica Chimica Acta, 2021, 514, 119993.                                                                  | 1.2 | 7         |
| 82 | Synthesis of axially substituted gallium, indium and thallium phthalocyanines with nonlinear optical properties. Arkivoc, 2006, 2006, 77-96.                                                                     | 0.3 | 7         |
| 83 | Hydroaminomethylation reaction as powerful tool for preparation of<br>rhodium/phosphine-functionalized nanomaterials. Catalytic evaluation in styrene hydroformylation.<br>Catalysis Today, 2020, 356, 456-463.  | 2.2 | 6         |
| 84 | Immobilization of Rh(I)-N-Xantphos and Fe(II)-C-Scorpionate onto Magnetic Nanoparticles: Reusable<br>Catalytic System for Sequential Hydroformylation/Acetalization. Catalysts, 2021, 11, 608.                   | 1.6 | 6         |
| 85 | Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities. Arabian Journal of Chemistry, 2020, 13, 2517-2525.                                     | 2.3 | 4         |
| 86 | A New Tool in the Quest for Biocompatible Phthalocyanines: Palladium Catalyzed Aminocarbonylation<br>for Amide Substituted Phthalonitriles and Illustrative Phthalocyanines Thereof. Catalysts, 2018, 8,<br>480. | 1.6 | 3         |
| 87 | Editorial (Thematic Issue: Tetrapyrrolic Macrocycles: Synthesis and Prospects). Current Organic<br>Synthesis, 2014, 11, 1-2.                                                                                     | 0.7 | 2         |
| 88 | Binaphthyl Based Molecules for Asymmetric Organocatalytic Aldol Reactions: Recent Developments<br>from a Successful Record. Mini-Reviews in Organic Chemistry, 2014, 11, 129-140.                                | 0.6 | 2         |
| 89 | Chlorins in Photodynamic Therapy - Synthesis and applications. Revista Virtual De Quimica, 2009, 1, .                                                                                                            | 0.1 | 2         |
| 90 | Molecular School– a pre-university chemistry school. Chemistry Teacher International, 2021, 3,<br>257-268.                                                                                                       | 0.9 | 1         |

| #  | Article                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2018, , 96-156.            | 0.3 | 1         |
| 92 | Solar energy: Past, present a whole future. Revista Virtual De Quimica, 2010, 2, .            | 0.1 | 1         |
| 93 | Chapter 2. Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2015, , 56-103. | 0.3 | Ο         |
| 94 | Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 2016, , 51-98.             | 0.3 | 0         |
| 95 | Symmetrically and Unsymmetrically Substituted Phthalocyanines. , 2008, , 217-225.             |     | Ο         |
| 96 | Tervalent phosphorus acid derivatives. Organophosphorus Chemistry, 0, , 52-103.               | 0.3 | 0         |