
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8183695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Se(IV) Immobilization onto Natural Siderite: Implications for High‣evel Nuclear Waste Repositories. Chemical Engineering and Technology, 2021, 44, 1160-1167.	1.5	3
2	Contribution of phases segregated from the UO2 matrix to the release of radionuclides from spent nuclear fuel and duration of the Instant Release Fraction (IRF). Journal of Nuclear Materials, 2020, 532, 152066.	2.7	5
3	Retention of cesium and strontium by uranophane, Ca(UO2)2(SiO3OH)2·5H2O. Journal of Hazardous Materials, 2018, 353, 431-435.	12.4	12
4	Oxidation by H2O(g) in the presence of H2(g) of UO2 doped with Pd nanoparticles. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 1201-1207.	1.5	3
5	Study of SIMFUEL corrosion under hyper-alkaline conditions in the presence of silicate and calcium. MRS Advances, 2017, 2, 543-548.	0.9	3
6	Effect of NaCl on the fabrication of the Egyptian blue pigment. Journal of Archaeological Science: Reports, 2017, 14, 174-180.	0.5	6
7	Integration of Foreigners in Egypt. Journal of Egyptian History, 2017, 10, 109-123.	0.2	0
8	ldentifying the Ethiopian origin of the obsidian found in Upper Egypt (Naqada period) and the most likely exchange routes*. Journal of Egyptian Archaeology, 2015, 101, 349-359.	0.2	6
9	UO ₂ as New Filling Material for Cesium Retention in High-Level Nuclear Waste Repositories. Environmental Engineering Science, 2015, 32, 854-857.	1.6	0
10	Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course. Journal of Chemical Education, 2015, 92, 456-462.	2.3	13
11	Incorporation of selenium(IV) and selenium(VI) on uranyl peroxide. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 153-159.	1.5	2
12	Egyptology in the service of learning chemistry in Industrial Engineering. Journal of Technology and Science Education, 2014, 4, .	1.2	1
13	Human Health Risk Assessment of a landfill based on volatile organic compounds emission, immission and soil gas concentration measurements. Applied Geochemistry, 2014, 49, 218-224.	3.0	41
14	Solubility study and point of zero charge of studtite (UO2O2·4H2O). Applied Geochemistry, 2014, 49, 42-45.	3.0	14
15	Dynamic leaching studies of 48MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions. Journal of Nuclear Materials, 2013, 434, 451-460.	2.7	13
16	Uranium speciation studies at alkaline pH and in the presence of hydrogen peroxide using time-resolved laser-induced fluorescence spectroscopy. Polyhedron, 2013, 55, 92-101.	2.2	12
17	Kinetics of hydrogen peroxide consumption in aqueous phase at different hydrogen partial pressures. Radiochimica Acta, 2012, 100, 445-448.	1.2	4
18	Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: Effect of high burn-up structure and leaching solution composition. Journal of Nuclear Materials, 2012, 427, 249-258.	2.7	33

#	Article	IF	CITATIONS
19	Uranium speciation in river sediments contaminated by phosphate ores. Environmental Chemistry Letters, 2012, 10, 49-53.	16.2	7
20	Determination of the equilibrium formation constants of two U(vi)–peroxide complexes at alkaline pH. Dalton Transactions, 2011, 40, 7976.	3.3	22
21	Effects of Ionizing Radiation and Temperature on Uranyl Silicates: Soddyite (UO ₂) ₂ (SiO ₄)(H ₂ O) ₂ and Uranophane Ca(UO ₂) ₂ (SiO ₃ OH) ₂ ·5H ₂ O. Environmental Science & amp: Technology, 2011, 45, 2510-2515.	10.0	6
22	Transport of Strontium Through a Ca-bentonite (AlmerÃa, Spain) and Comparison with MX-80 Na-bentonite: Experimental and Modelling. Water, Air, and Soil Pollution, 2011, 218, 471-478.	2.4	6
23	Reactive transport of arsenic(III) and arsenic(V) on natural hematite: Experimental and modeling. Journal of Colloid and Interface Science, 2010, 348, 293-297.	9.4	33
24	Sorption of strontium on uranyl peroxide: Implications for a high-level nuclear waste repository. Journal of Hazardous Materials, 2010, 181, 881-885.	12.4	32
25	Cesium sorption on studtite (UO ₂ O ₂ ·4H ₂ O). Radiochimica Acta, 2010, 98, 479-483.	1.2	13
26	Stability of uranium (VI) peroxide hydrates under ionizing radiation. American Mineralogist, 2009, 94, 229-235.	1.9	14
27	Combined effect of H2O2 and HCO3- on UO2(s) dissolution rates under anoxic conditions. Radiochimica Acta, 2009, 97, .	1.2	19
28	Leaching of 53 MW/d kg U spent nuclear fuel in a flow-through reactor. Radiochimica Acta, 2009, 97, .	1.2	8
29	The role of uranium peroxide studtite on the retention of Cs, Sr and Se(VI). Materials Research Society Symposia Proceedings, 2009, 1193, .	0.1	3
30	Interaction of Hydrogen Peroxide With Carbon Steel and Magnetite. Materials Research Society Symposia Proceedings, 2009, 1193, 265.	0.1	0
31	Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. Journal of Hazardous Materials, 2009, 171, 965-972.	12.4	184
32	Effect of temperature on studtite stability: Thermogravimetry and differential scanning calorimetry investigations. Journal of Nuclear Materials, 2009, 385, 467-473.	2.7	22
33	Thorium sorption onto magnetite and ferrihydrite in acidic conditions. Journal of Nuclear Materials, 2009, 385, 474-478.	2.7	42
34	Sorption of Th(IV) onto Iron Corrosion Products: EXAFS Study. Environmental Science & Technology, 2009, 43, 2825-2830.	10.0	32
35	Determination of UO2(s) dissolution rates in a hydrogen peroxide medium as a function of pressure and temperature. Journal of Nuclear Materials, 2008, 375, 151-156.	2.7	5
36	Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 2008, 150, 279-284.	12.4	245

#	Article	IF	CITATIONS
37	Secondary phase formation on UO2 in phosphate media. Applied Geochemistry, 2008, 23, 2249-2255.	3.0	8
38	Magnetite Sorption Capacity for Strontium as a Function of pH. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	5
39	UO ₂ dissolution in the presence of hydrogen peroxide at pH>11. Radiochimica Acta, 2008, 96, 535-539.	1.2	8
40	Kinetics of UO2 (s) Dissolution in the Presence of Hypochlorite, Chlorite, and Chlorate Solutions. Materials Research Society Symposia Proceedings, 2008, 1107, 1.	0.1	0
41	Sorption of Antimony (V) onto Synthetic Goethite in Carbonate Medium. Solvent Extraction and Ion Exchange, 2008, 26, 289-300.	2.0	29
42	A spectroscopic study of uranium(VI) interaction with magnetite. Applied Surface Science, 2007, 253, 8794-8797.	6.1	44
43	Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 2007, 141, 575-580.	12.4	517
44	Interaction of uranium with in situ anoxically generated magnetite on steel. Journal of Hazardous Materials, 2007, 147, 726-731.	12.4	36
45	Sorption of selenium(IV) and selenium(VI) onto magnetite. Applied Surface Science, 2006, 252, 3767-3773.	6.1	148
46	The use of a high-FeO olivine rock as a redox buffer in a nuclear waste repository. Journal of Contaminant Hydrology, 2006, 83, 42-52.	3.3	4
47	Sorption of Molybdenum(VI) on Synthetic Magnetite. Materials Research Society Symposia Proceedings, 2006, 932, 1.	0.1	6
48	Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments. Journal of Nuclear Materials, 2005, 346, 40-47.	2.7	26
49	The oxidative dissolution of unirradiated UO2 by hydrogen peroxide as a function of pH. Journal of Nuclear Materials, 2005, 345, 225-231.	2.7	55
50	Oxidation and dissolution of UO2 in bicarbonate media: Implications for the spent nuclear fuel oxidative dissolution mechanism. Journal of Nuclear Materials, 2005, 345, 232-238.	2.7	30
51	Influence of Î ² radiation on UO2 dissolution at different pH values. Radiochimica Acta, 2005, 93, 533-538.	1.2	13
52	The dissolution of high-FeO olivine rock from the Lovasjävi intrusion (SE-Finland) at 25°C as a function of pH. Applied Geochemistry, 2005, 20, 1284-1291.	3.0	12
53	Evidence of Uranium and Associated Trace Element Mobilization and Retention Processes at Oklo (Gabon), a Naturally Radioactive Site. Environmental Science & Technology, 2004, 38, 3310-3315.	10.0	6
54	Formation of Studtite during the Oxidative Dissolution of UO2by Hydrogen Peroxide:Â A SFM Study. Environmental Science & Technology, 2004, 38, 6656-6661.	10.0	71

#	Article	IF	CITATIONS
55	The Oxidative Dissolution Mechanism of Uranium Dioxide. The Effect of pH and Oxygen Partial Pressure. Materials Research Society Symposia Proceedings, 2003, 807, 618.	0.1	13
56	Sorption of Caesium on Commercial Magnetite with low Silica Content: Experimental and Modelling. Materials Research Society Symposia Proceedings, 2003, 807, 754.	0.1	6
57	Release of Radiotoxic Elements from High Burn-Up UO2 and MOX Fuel in a Repository. Materials Research Society Symposia Proceedings, 2000, 663, 1.	0.1	4
58	The oxidative dissolution mechanism of uranium dioxide. I. The effect of temperature in hydrogen carbonate medium. Geochimica Et Cosmochimica Acta, 1999, 63, 3097-3103.	3.9	126
59	The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions. Geochimica Et Cosmochimica Acta, 1998, 62, 2223-2231.	3.9	110
60	Effect of H2O2, NaClO and Fe on the dissolution of unirradiated UO2 in NaCl 5 mol kgâ^1. Comparison with spent fuel dissolution experiments. Journal of Nuclear Materials, 1996, 238, 64-69.	2.7	40
61	Solid surface evolution model to predict uranium release from unirradiated UO2 and nuclear spent fuel dissolution under oxidizing conditions. Journal of Nuclear Materials, 1996, 232, 138-145.	2.7	49
62	Fluorimetric determination of traces of uranium(VI) in brines and iron(III) oxides using separation on an activated silica gel column. Analytica Chimica Acta, 1992, 264, 115-119.	5.4	12