Xijin Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8183628/xijin-xu-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 104 4,375 39 h-index g-index citations papers 5,128 107 7.7 5.7 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
104	Pb and Cd exposure linked with Il-10 and Il-13 gene polymorphisms in asthma risk relevant immunomodulation in children <i>Chemosphere</i> , 2022 , 133656	8.4	1
103	Metabolomics insights into the prenatal exposure effects of polybrominated diphenyl ethers on neonatal birth outcomes <i>Science of the Total Environment</i> , 2022 , 155601	10.2	O
102	Combined toxicity of air pollutants related to e-waste on inflammatory cytokines linked with neurotransmitters and pediatric behavioral problems. <i>Ecotoxicology and Environmental Safety</i> , 2022 , 239, 113657	7	
101	Environmental contamination and public health effects of electronic waste: an overview. <i>Journal of Environmental Health Science & Engineering</i> , 2021 , 19, 1209-1227	2.9	3
100	Elevated lead levels in relation to low serum neuropeptide Y and adverse behavioral effects in preschool children with e-waste exposure. <i>Chemosphere</i> , 2021 , 269, 129380	8.4	9
99	Lead (Pb) exposure and heart failure risk. Environmental Science and Pollution Research, 2021, 28, 2883.	3-3.884	713
98	E-waste polycyclic aromatic hydrocarbon (PAH) exposure leads to child gut-mucosal inflammation and adaptive immune response. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 53267-53281	5.1	O
97	Relations of blood lead levels to echocardiographic left ventricular structure and function in preschool children. <i>Chemosphere</i> , 2021 , 268, 128793	8.4	6
96	High serum IgG subclass concentrations in children with e-waste Pb and Cd exposure. <i>Science of the Total Environment</i> , 2021 , 764, 142806	10.2	5
95	Increased intestinal permeability with elevated peripheral blood endotoxin and inflammatory indices for e-waste lead exposure in children. <i>Chemosphere</i> , 2021 , 279, 130862	8.4	3
94	E-waste lead exposure and children's health in China. Science of the Total Environment, 2020, 734, 1392	86 0.2	30
93	Exposure to multiple heavy metals associate with aberrant immune homeostasis and inflammatory activation in preschool children. <i>Chemosphere</i> , 2020 , 257, 127257	8.4	21
92	Antioxidant alterations link polycyclic aromatic hydrocarbons to blood pressure in children. <i>Science of the Total Environment</i> , 2020 , 732, 138944	10.2	9
91	Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. <i>Science of the Total Environment</i> , 2020 , 739, 139626	10.2	11
90	PM-bound PAHs exposure linked with low plasma insulin-like growth factor 1 levels and reduced child height. <i>Environment International</i> , 2020 , 138, 105660	12.9	15
89	Oral antimicrobial activity weakened in children with electronic waste lead exposure. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 14763-14770	5.1	2
88	Birth outcomes associated with maternal exposure to metals from informal electronic waste recycling in Guiyu, China. <i>Environment International</i> , 2020 , 137, 105580	12.9	24

(2019-2020)

87	Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: An under-recognized threat to local health. <i>Environment International</i> , 2020 , 139, 105731	12.9	25
86	Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. <i>Chemosphere</i> , 2020 , 246, 125829	8.4	20
85	PAH exposure is associated with enhanced risk for pediatric dyslipidemia through serum SOD reduction. <i>Environment International</i> , 2020 , 145, 106132	12.9	10
84	Elevated expression of AhR and NLRP3 link polycyclic aromatic hydrocarbon exposure to cytokine storm in preschool children. <i>Environment International</i> , 2020 , 139, 105720	12.9	14
83	Association of prenatal exposure to PAHs with anti-M[lerian hormone (AMH) levels and birth outcomes of newborns. <i>Science of the Total Environment</i> , 2020 , 723, 138009	10.2	17
82	Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. <i>Environmental Research</i> , 2019 , 171, 536-545	7.9	30
81	Elevated lead levels from e-waste exposure are linked to sensory integration difficulties in preschool children. <i>NeuroToxicology</i> , 2019 , 71, 150-158	4.4	19
80	The association of PM with airway innate antimicrobial activities of salivary agglutinin and surfactant protein D. <i>Chemosphere</i> , 2019 , 226, 915-923	8.4	9
79	Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. <i>Science of the Total Environment</i> , 2019 , 664, 690-697	10.2	17
78	Metal concentrations in pregnant women and neonates from informal electronic waste recycling. Journal of Exposure Science and Environmental Epidemiology, 2019 , 29, 406-415	6.7	24
77	Alterations in platelet indices link polycyclic aromatic hydrocarbons toxicity to low-grade inflammation in preschool children. <i>Environment International</i> , 2019 , 131, 105043	12.9	21
76	MicroRNAs and their role in environmental chemical carcinogenesis. <i>Environmental Geochemistry and Health</i> , 2019 , 41, 225-247	4.7	28
75	Air pollution and body burden of persistent organic pollutants at an electronic waste recycling area of China. <i>Environmental Geochemistry and Health</i> , 2019 , 41, 93-123	4.7	10
74	Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area. <i>Chemosphere</i> , 2019 , 220, 531-538	8.4	26
73	Cardiovascular endothelial inflammation by chronic coexposure to lead (Pb) and polycyclic aromatic hydrocarbons from preschool children in an e-waste recycling area. <i>Environmental Pollution</i> , 2019 , 246, 587-596	9.3	43
72	Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. <i>Environmental Pollution</i> , 2019 , 245, 453-461	9.3	32
71	Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms. <i>Environment International</i> , 2019 , 122, 263-269	12.9	10
70	Ambient fine particulate matter inhibits innate airway antimicrobial activity in preschool children in e-waste areas. <i>Environment International</i> , 2019 , 123, 535-542	12.9	30

69	Interactions between polycyclic aromatic hydrocarbons and epoxide hydrolase 1 play roles in asthma. <i>Environmental Geochemistry and Health</i> , 2019 , 41, 191-210	4.7	7
68	Heavy metal exposure has adverse effects on the growth and development of preschool children. <i>Environmental Geochemistry and Health</i> , 2019 , 41, 309-321	4.7	44
67	Connecting gastrointestinal cancer risk to cadmium and lead exposure in the Chaoshan population of Southeast China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 17611-17619	5.1	12
66	Hearing loss in children with e-waste lead and cadmium exposure. <i>Science of the Total Environment</i> , 2018 , 624, 621-627	10.2	42
65	Elevated inflammatory Lp-PLA2 and IL-6 link e-waste Pb toxicity to cardiovascular risk factors in preschool children. <i>Environmental Pollution</i> , 2018 , 234, 601-609	9.3	42
64	Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. <i>Environment International</i> , 2018 , 115, 117-126	12.9	25
63	Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 1481-1494	4.7	39
62	Lead exposure is associated with risk of impaired coagulation in preschool children from an e-waste recycling area. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 20670-20679	5.1	15
61	Proteomic evaluation of human umbilical cord tissue exposed to polybrominated diphenyl ethers in an e-waste recycling area. <i>Environment International</i> , 2018 , 111, 362-371	12.9	27
60	Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area. <i>Science of the Total Environment</i> , 2018 , 616-617, 988-995	10.2	22
59	Thyroid disruption and reduced mental development in children from an informal e-waste recycling area: A mediation analysis. <i>Chemosphere</i> , 2018 , 193, 498-505	8.4	21
58	Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. <i>Reproductive Toxicology</i> , 2018 , 75, 49-55	3.4	33
57	A 3D titanate aerogel with cellulose as the adsorption-aggregator for highly efficient water purification. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 5813-5819	13	52
56	Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area. <i>Science of the Total Environment</i> , 2017 , 592, 51-59	10.2	44
55	Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children. <i>Environmental Pollution</i> , 2017 , 230, 838-848	9.3	48
54	Temperature drop and the risk of asthma: a systematic review and meta-analysis. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 22535-22546	5.1	30
53	Alteration of the number and percentage of innate immune cells in preschool children from an e-waste recycling area. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 145, 615-622	7	24
52	Elevated lead levels from e-waste exposure are linked to decreased olfactory memory in children. <i>Environmental Pollution</i> , 2017 , 231, 1112-1121	9.3	25

(2015-2017)

51	Chest circumference and birth weight are good predictors of lung function in preschool children from an e-waste recycling area. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 22613-22621	5.1	12
50	No convincing association between genetic markers and respiratory symptoms: results of a GWA study. <i>Respiratory Research</i> , 2017 , 18, 11	7.3	2
49	Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children. <i>Environmental Pollution</i> , 2017 , 220, 354-363	9.3	40
48	Early-life Exposure to Widespread Environmental Toxicants and Health Risk: A Focus on the Immune and Respiratory Systems. <i>Annals of Global Health</i> , 2016 , 82, 119-31	3.3	39
47	Children with health impairments by heavy metals in an e-waste recycling area. <i>Chemosphere</i> , 2016 , 148, 408-15	8.4	136
46	Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. <i>Science of the Total Environment</i> , 2016 , 550, 1163-1170	10.2	26
45	Heavy metals in PM2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. <i>Environmental Pollution</i> , 2016 , 210, 346-53	9.3	113
44	Elevated lead levels and adverse effects on natural killer cells in children from an electronic waste recycling area. <i>Environmental Pollution</i> , 2016 , 213, 143-150	9.3	48
43	Associations between maternal phenolic exposure and cord sex hormones in male newborns. <i>Human Reproduction</i> , 2016 , 31, 648-56	5.7	40
42	Ambient Air Heavy Metals in PM2.5 and Potential Human Health Risk Assessment in an Informal Electronic-Waste Recycling Site of China. <i>Aerosol and Air Quality Research</i> , 2016 , 16, 388-397	4.6	72
41	Thyroid Hormone Status in Umbilical Cord Serum Is Positively Associated with Male Anogenital Distance. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2016 , 101, 3378-85	5.6	7
40	Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 17511-24	5.1	75
39	The role of the PM2.5-associated metals in pathogenesis of child Mycoplasma Pneumoniae infections: a systematic review. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 10604-10614	5.1	18
38	Considerable decrease of antibody titers against measles, mumps, and rubella in preschool children from an e-waste recycling area. <i>Science of the Total Environment</i> , 2016 , 573, 760-766	10.2	16
37	Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. <i>Environmental Pollution</i> , 2015 , 196, 414-22	9.3	37
36	Association of polycyclic aromatic hydrocarbons (PAHs) and lead co-exposure with child physical growth and development in an e-waste recycling town. <i>Chemosphere</i> , 2015 , 139, 295-302	8.4	42
35	E-waste environmental contamination and harm to public health in China. <i>Frontiers of Medicine</i> , 2015 , 9, 220-8	12	43
34	Assessment of association between the dopamine D2 receptor (DRD2) polymorphism and neurodevelopment of children exposed to lead. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 1786-93	5.1	9

33	Chromium exposure among children from an electronic waste recycling town of China. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 1778-85	5.1	24
32	Decreased blood hepatitis B surface antibody levels linked to e-waste lead exposure in preschool children. <i>Journal of Hazardous Materials</i> , 2015 , 298, 122-8	12.8	59
31	Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. <i>Reproductive Toxicology</i> , 2015 , 52, 62-70	3.4	42
30	Association between blood erythrocyte lead concentrations and hemoglobin levels in preschool children. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 9233-40	5.1	15
29	Increase male genital diseases morbidity linked to informal electronic waste recycling in Guiyu, China. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 3540-5	5.1	19
28	ALAD genotypes and blood lead levels of neonates and children from e-waste exposure in Guiyu, China. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 6744-50	5.1	17
27	Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: distribution, compositional profile, and sources. <i>Chemosphere</i> , 2014 , 102, 55-60	8.4	69
26	S100In heavy metal-related child attention-deficit hyperactivity disorder in an informal e-waste recycling area. <i>NeuroToxicology</i> , 2014 , 45, 185-91	4.4	39
25	Anogenital distance and its application in environmental health research. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 5457-64	5.1	38
24	Blood lead levels and associated factors among children in Guiyu of China: a population-based study. <i>PLoS ONE</i> , 2014 , 9, e105470	3.7	29
23	Elevated serum polybrominated diphenyl ethers and alteration of thyroid hormones in children from Guiyu, China. <i>PLoS ONE</i> , 2014 , 9, e113699	3.7	24
22	Effects of lead and cadmium exposure from electronic waste on child physical growth. <i>Environmental Science and Pollution Research</i> , 2013 , 20, 4441-7	5.1	96
21	Placental IGF-1 and IGFBP-3 expression correlate with umbilical cord blood PAH and PBDE levels from prenatal exposure to electronic waste. <i>Environmental Pollution</i> , 2013 , 182, 63-9	9.3	55
20	Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China. <i>PLoS ONE</i> , 2013 , 8, e60815	3.7	35
19	Association between lung function in school children and exposure to three transition metals from an e-waste recycling area. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2013 , 23, 67-72	6.7	102
18	Birth outcomes related to informal e-waste recycling in Guiyu, China. <i>Reproductive Toxicology</i> , 2012 , 33, 94-8	3.4	104
17	Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. <i>Science of the Total Environment</i> , 2012 , 423, 62-72	10.2	107
16	Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. <i>Science of the Total Environment</i> , 2012 , 427-428, 35-40	10.2	85

LIST OF PUBLICATIONS

15	Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. <i>Environment International</i> , 2012 , 48, 1-8	12.9	105
14	In utero exposure to polychlorinated biphenyls and reduced neonatal physiological development from Guiyu, China. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 2141-7	7	39
13	Association between lead exposure from electronic waste recycling and child temperament alterations. <i>NeuroToxicology</i> , 2011 , 32, 458-64	4.4	76
12	Downregulation of placental S100P is associated with cadmium exposure in Guiyu, an e-waste recycling town in China. <i>Science of the Total Environment</i> , 2011 , 410-411, 53-8	10.2	31
11	Assessment of cadmium exposure for neonates in Guiyu, an electronic waste pollution site of China. <i>Environmental Monitoring and Assessment</i> , 2011 , 177, 343-51	3.1	43
10	Sources, distribution, and toxicity of polycyclic aromatic hydrocarbons. <i>Journal of Environmental Health</i> , 2011 , 73, 22-5	0.4	47
9	Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. <i>Environmental Science & Environmental Scie</i>	10.3	151
8	Lead affects apoptosis and related gene XIAP and Smac expression in the hippocampus of developing rats. <i>Neurochemical Research</i> , 2010 , 35, 473-9	4.6	21
7	Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. <i>Science of the Total Environment</i> , 2010 , 408, 3113-7	10.2	155
6	Association of MDR1 and ERCC1 polymorphisms with response and toxicity to cisplatin-based chemotherapy in non-small-cell lung cancer patients. <i>International Journal of Hygiene and Environmental Health</i> , 2010 , 213, 140-5	6.9	48
5	Lead and cadmium synergistically enhance the expression of divalent metal transporter 1 protein in central nervous system of developing rats. <i>Neurochemical Research</i> , 2009 , 34, 1150-6	4.6	25
4	The hazard of chromium exposure to neonates in Guiyu of China. <i>Science of the Total Environment</i> , 2008 , 403, 99-104	10.2	127
3	Blood lead and cadmium levels and relevant factors among children from an e-waste recycling town in China. <i>Environmental Research</i> , 2008 , 108, 15-20	7.9	216
2	Monitoring of lead load and its effect on neonatal behavioral neurological assessment scores in Guiyu, an electronic waste recycling town in China. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 1233-	-8	83
1	Elevated blood lead levels of children in Guiyu, an electronic waste recycling town in China. Environmental Health Perspectives. 2007, 115, 1113-7	8.4	385