
Roger P Hellens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8183506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Rice GDP-L-Galactose Phosphorylase Constitutive Overexpression on Ascorbate Concentration, Stress Tolerance, and Iron Bioavailability in Rice. Frontiers in Plant Science, 2020, 11, 595439.	1.7	18
2	Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 2020, 21, 1790.	1.8	44
3	The Rapid Methylation of T-DNAs Upon Agrobacterium Inoculation in Plant Leaves. Frontiers in Plant Science, 2019, 10, 312.	1.7	17
4	Genome-wide identification and characterization of the GDP-L-galactose phosphorylase gene family in bread wheat. BMC Plant Biology, 2019, 19, 515.	1.6	10
5	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	1.2	167
6	Ac <scp>FT</scp> promotes kiwifruit inÂvitro flowering when overexpressed and Arabidopsis flowering when expressed in the vasculature under its own promoter. Plant Direct, 2018, 2, e00068.	0.8	11
7	The Rise and Rise of <i>Nicotiana benthamiana</i> : A Plant for All Reasons. Annual Review of Phytopathology, 2018, 56, 405-426.	3.5	201
8	Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology, 2017, 44, 153-160.	3.3	72
9	Molecular architectures of benzoic acid-specific type III polyketide synthases. Acta Crystallographica Section D: Structural Biology, 2017, 73, 1007-1019.	1.1	11
10	SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science, 2017, 08, 477.	1.7	121
11	Multiple Copies of a Simple MYB-Binding Site Confers Trans-regulation by Specific Flavonoid-Related R2R3 MYBs in Diverse Species. Frontiers in Plant Science, 2017, 8, 1864.	1.7	38
12	The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence. PLoS ONE, 2017, 12, e0171311.	1.1	32
13	Infiltration-RNAseq: transcriptome profiling of Agrobacterium-mediated infiltration of transcription factors to discover gene function and expression networks in plants. Plant Methods, 2016, 12, 41.	1.9	26
14	The Emerging World of Small ORFs. Trends in Plant Science, 2016, 21, 317-328.	4.3	99
15	The extremophile Nicotiana benthamiana has traded viral defence for early vigour. Nature Plants, 2015, 1, 15165.	4.7	114
16	éžã,³ãf¼ãf‰RNAã«ã€ãfšãf—ãfãf‰ãŒã,³ãf¼ãf‰ã•ã,Œã┥ã,ãŸï¼• Nature Digest, 2015, 12, 31-32.	0.0	0
17	An Upstream Open Reading Frame Is Essential for Feedback Regulation of Ascorbate Biosynthesis in Arabidopsis. Plant Cell, 2015, 27, 772-786.	3.1	192
18	In the Solanaceae, a hierarchy of bHLHs confer distinct target specificity to the anthocyanin regulatory complex. Journal of Experimental Botany, 2015, 66, 1427-1436.	2.4	117

#	Article	IF	CITATIONS
19	Coding in non-coding RNAs. Nature, 2015, 520, 41-42.	13.7	36
20	Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Reports, 2015, 34, 1817-1823.	2.8	11
21	Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany, 2014, 65, 4985-4995.	2.4	59
22	Dietary Flavonoids from Modified Apple Reduce Inflammation Markers and Modulate Gut Microbiota in Mice. Journal of Nutrition, 2014, 144, 146-154.	1.3	153
23	The Draft Genome Sequence of European Pear (Pyrus communis L. â€~Bartlett'). PLoS ONE, 2014, 9, e92644.	1.1	241
24	An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genomics, 2013, 14, 28.	1.2	73
25	Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology, 2013, 13, 68.	1.6	247
26	Transient Gene Expression in Medicago truncatula Leaves via Agroinfiltration. Methods in Molecular Biology, 2013, 1069, 215-226.	0.4	16
27	Phenotypic changes associated with <scp>RNA</scp> interference silencing of chalcone synthase in apple (<i>Malus</i> × <i>domestica</i>) . Plant Journal, 2013, 74, 398-410.	2.8	78
28	The role of enoyl reductase genes in phloridzin biosynthesis in apple. Plant Physiology and Biochemistry, 2013, 72, 54-61.	2.8	19
29	Analysis of genetically modified redâ€fleshed apples reveals effects on growth and consumer attributes. Plant Biotechnology Journal, 2013, 11, 408-419.	4.1	92
30	Homologs of <i><scp>FT</scp></i> , <i><scp>CEN</scp></i> and <i><scp>FD</scp></i> respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist, 2013, 198, 732-746.	3.5	72
31	RNA interference silencing of <i>CHS</i> greatly alters the growth pattern of apple (<i><i>Malus</i></i> x <i>xdomestica</i>). Plant Signaling and Behavior, 2013, 8, e25033.	1.2	14
32	De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana. PLoS ONE, 2013, 8, e59534.	1.1	152
33	Actinidia DRM1 - An Intrinsically Disordered Protein Whose mRNA Expression Is Inversely Correlated with Spring Budbreak in Kiwifruit. PLoS ONE, 2013, 8, e57354.	1.1	25
34	Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany, 2012, 63, 797-807.	2.4	148
35	Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany, 2012, 63, 5437-5450.	2.4	74
36	An Ancient Duplication of Apple MYB Transcription Factors Is Responsible for Novel Red Fruit-Flesh Phenotypes Â. Plant Physiology, 2012, 161, 225-239.	2.3	272

#	Article	IF	CITATIONS
37	Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple. PLoS ONE, 2012, 7, e31745.	1.1	249
38	Advanced Engineering of Lipid Metabolism in Nicotiana benthamiana Using a Draft Genome and the V2 Viral Silencing-Suppressor Protein. PLoS ONE, 2012, 7, e52717.	1.1	85
39	Coincident sequence-specific RNA degradation of linked transgenes in the plant genome. Plant Molecular Biology, 2012, 78, 259-273.	2.0	17
40	Kiwifruit floral gene APETALA2 is alternatively spliced and accumulates in aberrant indeterminate flowers in the absence of miR172. Plant Molecular Biology, 2012, 78, 417-429.	2.0	51
41	Quantitative Stem-Loop RT-PCR for Detection of MicroRNAs. Methods in Molecular Biology, 2011, 744, 145-157.	0.4	126
42	Mendel, 150 years on. Trends in Plant Science, 2011, 16, 590-596.	4.3	58
43	High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant, Cell and Environment, 2011, 34, 1176-1190.	2.8	330
44	Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in redâ€fleshed kiwifruit (<i>Actinidia chinensis</i>). Plant Journal, 2011, 65, 106-118.	2.8	164
45	The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43, 109-116.	9.4	1,091
46	Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development. BMC Plant Biology, 2011, 11, 72.	1.6	43
47	Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11, 93.	1.6	227
48	A transient assay for recombination demonstrates that Arabidopsis SNM1 and XRCC3 enhance non-homologous recombination. Genetics and Molecular Research, 2011, 10, 2104-32.	0.3	4
49	An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 2010, 10, 50.	1.6	576
50	The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42, 833-839.	9.4	1,891
51	Identification of Mendel's White Flower Character. PLoS ONE, 2010, 5, e13230.	1.1	135
52	qRT-PCR of Small RNAs. Methods in Molecular Biology, 2010, 631, 109-122.	0.4	34
53	The Role of Ethylene and Cold Temperature in the Regulation of the Apple <i>POLYGALACTURONASE1</i> Gene and Fruit Softening Â. Plant Physiology, 2010, 153, 294-305.	2.3	137
54	Environmental regulation of leaf colour in red <i>35S:PAP1 Arabidopsis thaliana</i> . New Phytologist, 2009. 182. 102-115.	3.5	215

4

#	Article	IF	CITATIONS
55	A rapid transcriptional activation is induced by the dormancy-breaking chemical hydrogen cyanamide in kiwifruit (Actinidia deliciosa) buds. Journal of Experimental Botany, 2009, 60, 3835-3848.	2.4	56
56	Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. Plant Cell, 2009, 21, 168-183.	3.1	453
57	The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. Journal of Experimental Botany, 2009, 60, 3765-3779.	2.4	132
58	Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 2008, 9, 351.	1.2	178
59	Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Methods, 2008, 4, 17.	1.9	73
60	MYB transcription factors that colour our fruit. Trends in Plant Science, 2008, 13, 99-102.	4.3	594
61	Epigenetic Inactivation of Chalcone Synthase-A Transgene Transcription in Petunia Leads to a Reversion of the Post-Transcriptional Gene Silencing Phenotype. Plant and Cell Physiology, 2007, 48, 638-647.	1.5	33
62	Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods, 2007, 3, 12.	1.9	1,048
63	Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant Journal, 2007, 49, 414-427.	2.8	1,113
64	Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genomics, 2007, 8, 212.	1.2	195
65	The Binding of Nuclear Factors to the as-1 Element in the CaMV 35S Promoter is Affected by Cytosine Methylation in Vitro. Plant Biology, 2007, 9, 435-441.	1.8	17
66	Effect of 5'UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics, 2006, 7, 120.	1.2	184
67	Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods, 2005, 1, 13.	1.9	1,290
68	Developmentally and transgene regulated nuclear processing of primary transcripts of chalcone synthase A in petunia. Plant Journal, 2000, 23, 63-72.	2.8	25
69	pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 2000, 42, 819-832.	2.0	1,426
70	Mini-scale method for nuclear run-on transcription assay in plants. Plant Molecular Biology Reporter, 2000, 18, 377-383.	1.0	22
71	Technical Focus:A guide to Agrobacterium binary Ti vectors. Trends in Plant Science, 2000, 5, 446-451.	4.3	427
72	UNIFOLIATA regulates leaf and flower morphogenesis in pea. Current Biology, 1997, 7, 581-587.	1.8	375

5

#	Article	IF	CITATIONS
73	Characterisation of a glutathione reductase gene and its genetic locus from pea (Pisum sativum L.). Planta, 1996, 200, 186-94.	1.6	14
74	Inheritance of qualitative and quantitative trypsin inhibitor variants in Pisum. Theoretical and Applied Genetics, 1994, 89, 387-391.	1.8	20
75	The organisation and expression of the genes encoding the mitochondrial glycine decarboxylase complex and serine hydroxymethyltransferase in pea (Pisum sativum). Molecular Genetics and Genomics, 1993, 236-236, 402-408.	2.4	45
76	Genetic aspects of the organization of legumin genes in pea. Plant Molecular Biology, 1993, 22, 101-112.	2.0	14
77	Repeated sequences as genetic markers in pooled tissue samples. Plant Molecular Biology, 1993, 22, 153-157.	2.0	10
78	A copia-like element in Pisum demonstrates the uses of dispersed repeated sequences in genetic analysis. Plant Molecular Biology, 1990, 15, 707-722.	2.0	74