Mark A Blitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/818344/publications.pdf

Version: 2024-02-01

76326 149698 4,212 132 40 56 citations h-index g-index papers 146 146 146 3151 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Direct Measurements of Isoprene Autoxidation: Pinpointing Atmospheric Oxidation in Tropical Forests. Jacs Au, 2022, 2, 809-818.	7.9	6
2	The reaction between HgBr and O ₃ : kinetic study and atmospheric implications. Physical Chemistry Chemical Physics, 2022, , .	2.8	8
3	Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH& t;sub>2& t;/sub>OO Criegee intermediate. Atmospheric Measurement Techniques, 2022, 15, 2875-2887.	3.1	2
4	Kinetics of the gas phase reaction of the Criegee intermediate CH ₂ OO with SO ₂ as a function of temperature. Physical Chemistry Chemical Physics, 2021, 23, 19415-19423.	2.8	10
5	Production of HONO from NO ₂ uptake on illuminated TiO ₂ aerosol particles and following the illumination of mixed TiO ₂ â^ammonium nitrate particles. Atmospheric Chemistry and Physics. 2021. 21. 5755-5775.	4.9	14
6	Global Master Equation Analysis of Rate Data for the Reaction C2H4 + H â‡,, C2H5: Î"fH0⊗C2H5. Journal of Physical Chemistry A, 2021, 125, 9548-9565.	2.5	3
7	OH Kinetics with a Range of Nitrogen-Containing Compounds: N-Methylformamide, t-Butylamine, and N-Methyl-propane Diamine. Journal of Physical Chemistry A, 2021, 125, 10439-10450.	2.5	O
8	Kinetics of the Gas Phase Reactions of the Criegee Intermediate CH2OO with O3 and IO. Journal of Physical Chemistry A, 2020, 124, 6287-6293.	2.5	7
9	Kinetic Study of the Reactions PO + O ₂ and PO ₂ + O ₃ and Spectroscopy of the PO Radical. Journal of Physical Chemistry A, 2020, 124, 7911-7926.	2.5	10
10	A gas-to-particle conversion mechanism helps to explain atmospheric particle formation through clustering of iodine oxides. Nature Communications, 2020, 11, 4521.	12.8	39
11	Kinetics of the Reactions of Hydroxyl Radicals with Furan and Its Alkylated Derivatives 2-Methyl Furan and 2,5-Dimethyl Furan. Journal of Physical Chemistry A, 2020, 124, 7416-7426.	2.5	14
12	Rate coefficients for the reactions of OH with butanols from 298 K to temperatures relevant for lowâ€temperature combustion. International Journal of Chemical Kinetics, 2020, 52, 1046-1059.	1.6	7
13	Direct Trace Fitting of Experimental Data Using the Master Equation: Testing Theory and Experiments on the OH + C2H4 Reaction. Journal of Physical Chemistry A, 2020, 124, 4015-4024.	2.5	12
14	CH $<$ sub $>$ 2 $<$ /sub $>$ 00 Criegee intermediate UV absorption cross-sections and kinetics of CH $<$ sub $>$ 2 $<$ /sub $>$ 00 + CH $<$ sub $>$ 2 $<$ /sub $>$ 00 and CH $<$ sub $>$ 2 $<$ /sub $>$ 00 + I as a function of pressure. Physical Chemistry Chemical Physics, 2020, 22, 9448-9459.	2.8	25
15	A new instrument for time-resolved measurement of HO ₂ radicals. Atmospheric Measurement Techniques, 2020, 13, 839-852.	3.1	6
16	Determination of the absorption cross sections of higher-order iodine oxides at 355Âand 532 nm. Atmospheric Chemistry and Physics, 2020, 20, 10865-10887.	4.9	14
17	Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH ₃ OCH ₂ . Zeitschrift Fur Physikalische Chemie, 2020, 234, 1233-1250.	2.8	2
18	Experimental Study of the Removal of Ground- and Excited-State Phosphorus Atoms by Atmospherically Relevant Species. Journal of Physical Chemistry A, 2019, 123, 9469-9478.	2.5	19

#	Article	IF	Citations
19	Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O ₂ : Experimental and Theoretical Investigations of QOOH Radicals Derived from Cl + (CH ₃) ₃ COOH. Journal of Physical Chemistry A, 2019, 123, 10254-10262.	2.5	11
20	Measurements of Low Temperature Rate Coefficients for the Reaction of CH with CH ₂ 0 and Application to Dark Cloud and AGB Stellar Wind Models. Astrophysical Journal, 2019, 885, 134.	4.5	13
21	A generic method for determining R + O2 rate parameters via OH regeneration. Chemical Physics Letters, 2019, 730, 213-219.	2.6	4
22	Low temperature gas phase reaction rate coefficient measurements: Toward modeling of stellar winds and the interstellar medium. Proceedings of the International Astronomical Union, 2019, 15, 382-383.	0.0	0
23	Low temperature studies of the rate coefficients and branching ratios of reactive loss vs quenching for the reactions of 1CH2 with C2H6, C2H4, C2H2. Icarus, 2019, 321, 752-766.	2.5	8
24	Comment on "Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature―by W. Siebrand, Z. Smedarchina, E. MartÃnez-Núñez and A. Fernández-Ramos, ⟨i⟩Phys. Chem. Chem. Phys⟨i⟩., 2016, ⟨b⟩18⟨b⟩, 22712. Physical Chemistry Chemical Physics, 2018, 20, 8349-8354.	2.8	10
25	Low temperature studies of the removal reactions of 1CH2 with particular relevance to the atmosphere of Titan. Icarus, 2018, 303, 10-21.	2.5	12
26	A novel multiplex absorption spectrometer for time-resolved studies. Review of Scientific Instruments, 2018, 89, 024101.	1.3	10
27	Exploring the features on the OH + SO ₂ potential energy surface using theory and testing its accuracy by comparison to experimental data. Physical Chemistry Chemical Physics, 2018, 20, 8984-8990.	2.8	5
28	Laser Photolysis Kinetic Study of OH Radical Reactions with Methyl <i>tert</i> Butyl Ether and Trimethyl Orthoformate under Conditions Relevant to Low Temperature Combustion: Measurements of Rate Coefficients and OH Recycling. Journal of Physical Chemistry A, 2018, 122, 9701-9711.	2.5	10
29	Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH ₂ OO and CD ₂ OO. Physical Chemistry Chemical Physics, 2018, 20, 24940-24954.	2.8	41
30	Structure-switching M ₃ L ₂ lr(<scp>iii</scp>) coordination cages with photo-isomerising azo-aromatic linkers. Chemical Science, 2018, 9, 8150-8159.	7.4	69
31	Kinetic studies of C ₁ and C ₂ Criegee intermediates with SO ₂ using laser flash photolysis coupled with photoionization mass spectrometry and time resolved UV absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 22218-22227.	2.8	25
32	Kinetics of the Reaction of OH with Isoprene over a Wide Range of Temperature and Pressure Including Direct Observation of Equilibrium with the OH Adducts. Journal of Physical Chemistry A, 2018, 122, 7239-7255.	2.5	16
33	An Experimental Study of the Kinetics of OH/OD($\langle i\rangle v\langle i\rangle = 1,2,3$) + SO $\langle sub\rangle 2\langle sub\rangle :$ The Limiting High-Pressure Rate Coefficients as a Function of Temperature. Journal of Physical Chemistry A, 2017, 121, 3175-3183.	2.5	10
34	An Experimental and Master Equation Study of the Kinetics of OH/OD + SO ₂ : The Limiting High-Pressure Rate Coefficients. Journal of Physical Chemistry A, 2017, 121, 3184-3191.	2.5	11
35	Obtaining effective rate coefficients to describe the decomposition kinetics of the corannulene oxyradical at high temperatures. Physical Chemistry Chemical Physics, 2017, 19, 11064-11074.	2.8	11
36	OH production from the photolysis of isoprene-derived peroxy radicals: cross-sections, quantum yields and atmospheric implications. Physical Chemistry Chemical Physics, 2017, 19, 2332-2345.	2.8	16

#	Article	IF	CITATIONS
37	An instrument to measure fast gas phase radical kinetics at high temperatures and pressures. Review of Scientific Instruments, 2016, 87, 054102.	1.3	8
38	Observation of a new channel, the production of CH ₃ , in the abstraction reaction of OH radicals with acetaldehyde. Physical Chemistry Chemical Physics, 2016, 18, 26423-26433.	2.8	10
39	Bimolecular reactions of activated species: An analysis of problematic HC(O)C(O) chemistry. Chemical Physics Letters, 2016, 661, 58-64.	2.6	14
40	Temperature and Pressure Studies of the Reactions of CH ₃ O ₂ , HO ₂ , and 1,2-C ₄ H ₉ O ₂ with NO ₂ . Journal of Physical Chemistry A, 2016, 120, 1408-1420.	2.5	12
41	Global Uncertainty Propagation and Sensitivity Analysis in the CH3OCH2 + O2 System: Combining Experiment and Theory To Constrain Key Rate Coefficients in DME Combustion. Journal of Physical Chemistry A, 2015, 119, 7430-7438.	2.5	27
42	Reanalysis of Rate Data for the Reaction CH ₃ + CH ₃ â†' C ₂ H ₆ Using Revised Cross Sections and a Linearized Second-Order Master Equation. Journal of Physical Chemistry A, 2015, 119, 7668-7682.	2.5	28
43	Direct evidence for a substantive reaction between the Criegee intermediate, CH ₂ OO, and the water vapour dimer. Physical Chemistry Chemical Physics, 2015, 17, 4859-4863.	2.8	155
44	The importance of OH radical–neutral low temperature tunnelling reactions in interstellar clouds using a new model. Molecular Physics, 2015, 113, 2243-2254.	1.7	35
45	Branching ratios for the reactions of OH with ethanol amines used in carbon capture and the potential impact on carcinogen formation in the emission plume from a carbon capture plant. Physical Chemistry Chemical Physics, 2015, 17, 25342-25353.	2.8	14
46	Measurements of Rate Coefficients for Reactions of OH with Ethanol and Propan-2-ol at Very Low Temperatures. Journal of Physical Chemistry A, 2015, 119, 7130-7137.	2.5	45
47	A combined experimental and theoretical study of reactions between the hydroxyl radical and oxygenated hydrocarbons relevant to astrochemical environments. Physical Chemistry Chemical Physics, 2014, 16, 3466-3478.	2.8	54
48	Kinetics of CH ₂ OO reactions with SO ₂ , NO ₂ , NO, H ₂ O and CH ₃ CHO as a function of pressure. Physical Chemistry Chemical Physics, 2014, 16, 1139-1149.	2.8	215
49	Analysis of the Kinetics and Yields of OH Radical Production from the CH ₃ OCH ₂ + O ₂ Reaction in the Temperature Range 195–650 K: An Experimental and Computational study. Journal of Physical Chemistry A, 2014, 118, 6773-6788.	2.5	58
50	Atmospheric Oxidation of Piperazine by OH has a Low Potential To Form Carcinogenic Compounds. Environmental Science and Technology Letters, 2014, 1, 367-371.	8.7	22
51	Branching Ratios in Reactions of OH Radicals with Methylamine, Dimethylamine, and Ethylamine. Environmental Science & Environmental Science & Environm	10.0	52
52	Low Temperature Kinetics of the CH ₃ OH + OH Reaction. Journal of Physical Chemistry A, 2014, 118, 2693-2701.	2.5	68
53	Kinetic Study of the OH + Glyoxal Reaction: Experimental Evidence and Quantification of Direct OH Recycling. Journal of Physical Chemistry A, 2013, 117, 11027-11037.	2.5	34
54	Experimental and Theoretical Study of the Kinetics and Mechanism of the Reaction of OH Radicals with Dimethyl Ether. Journal of Physical Chemistry A, 2013, 117, 11142-11154.	2.5	55

#	Article	IF	CITATIONS
55	Gas-Phase Reactions of OH with Methyl Amines in the Presence or Absence of Molecular Oxygen. An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2013, 117, 10736-10745.	2.5	48
56	On the mechanism of iodine oxide particle formation. Physical Chemistry Chemical Physics, 2013, 15, 15612.	2.8	52
57	CH2OO Criegee biradical yields following photolysis of CH2I2 in O2. Physical Chemistry Chemical Physics, 2013, 15, 19119.	2.8	47
58	Pressure and temperature dependent photolysis of glyoxal in the 355–414 nm region: evidence for dissociation from multiple states. Physical Chemistry Chemical Physics, 2013, 15, 6516.	2.8	14
59	Quantum yields for the photolysis of glyoxal below 350 nm and parameterisations for its photolysis rate in the troposphere. Physical Chemistry Chemical Physics, 2013, 15, 4984.	2.8	19
60	Mechanism of the Reaction of OH with Alkynes in the Presence of Oxygen. Journal of Physical Chemistry A, 2013, 117, 5407-5418.	2.5	20
61	Accelerated chemistry in the reaction between the hydroxyl radical and methanol at interstellar temperatures facilitated by tunnelling. Nature Chemistry, 2013, 5, 745-749.	13.6	223
62	Reporting the sensitivity of laser-induced fluorescence instruments used for HO ₂ detection to an interference from RO ₂ radicals and introducing a novel approach that enables HO ₂ and certain RO ₂	3.1	77
63	types to be selectively measured. Atmospheric Measurement Techniques, 2013, 6, 3425-3440. Laboratory studies of photochemistry and gas phase radical reaction kinetics relevant to planetary atmospheres. Chemical Society Reviews, 2012, 41, 6318.	38.1	23
64	Direct Determination of the Rate Coefficient for the Reaction of OH Radicals with Monoethanol Amine (MEA) from 296 to 510 K. Journal of Physical Chemistry Letters, 2012, 3, 853-856.	4.6	38
65	Interception of Excited Vibrational Quantum States by O ₂ in Atmospheric Association Reactions. Science, 2012, 337, 1066-1069.	12.6	90
66	Rate Constants and Branching Ratios for the Reaction of CH Radicals with NH ₃ : A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2012, 116, 5877-5885.	2.5	20
67	Timeâ€ofâ€flight mass spectrometry for timeâ€resolved measurements: Some developments and applications. International Journal of Chemical Kinetics, 2012, 44, 532-545.	1.6	25
68	Site-Specific Rate Coefficients for Reaction of OH with Ethanol from 298 to 900 K. Journal of Physical Chemistry A, 2011, 115, 3335-3345.	2.5	52
69	Experimental and Modeling Studies of the Pressure and Temperature Dependences of the Kinetics and the OH Yields in the Acetyl + O ₂ Reaction. Journal of Physical Chemistry A, 2011, 115, 1069-1085.	2.5	57
70	Developments in Laboratory Studies of Gas-Phase Reactions for Atmospheric Chemistry with Applications to Isoprene Oxidation and Carbonyl Chemistry. Annual Review of Physical Chemistry, 2011, 62, 351-373.	10.8	6
71	³ CH ₂ + O ₂ : Kinetics and Product Channel Branching Ratios. Zeitschrift Fur Physikalische Chemie, 2011, 225, 957-967.	2.8	17
72	Product branching fractions for the reaction of O(3P) atoms with methanol and ethanol. Chemical Physics Letters, 2011, 511, 207-212.	2.6	4

#	Article	IF	CITATIONS
73	An Experimental and Theoretical Study of the Reaction Between NH(X3룉^') + SO(X3룉^'). Zeitschrift Fur Physikalische Chemie, 2010, 224, 1009-1024.	2.8	1
74	A Multidimensional Study of the Reaction CH ₂ I+O ₂ : Products and Atmospheric Implications. ChemPhysChem, 2010, 11, 3928-3941.	2.1	43
75	Kinetics and yields of OH radical from the CH3OCH2+O2 reaction using a new photolytic source. Chemical Physics Letters, 2010, 487, 45-50.	2.6	13
76	State resolved measurements of a C1H2 removal confirm predictions of the gateway model for electronic quenching. Journal of Chemical Physics, 2010, 132, 024302.	3.0	18
77	A laser induced fluorescence study relating to physical properties of the iodine monoxide radical. Physical Chemistry Chemical Physics, 2010, 12, 823-834.	2.8	7
78	H-Atom Yields from the Photolysis of Acetylene and from the Reaction of C $<$ sub $>$ 2 $<$ /sub $>$ H with H $<$ sub $>$ 2 $<$ /sub $>$, C $<$ sub $>$ 4 $<$ /sub $>$. Journal of Physical Chemistry A, 2010, 114, 4735-4741.	2.5	31
79	Temperature Dependent Kinetics (195â^'798 K) and H Atom Yields (298â^'498 K) from Reactions of ¹ CH ₂ with Acetylene, Ethene, and Propene. Journal of Physical Chemistry A, 2010, 114, 9413-9424.	2.5	30
80	Comment on "The Conical Intersection Dominates the Generation of Tropospheric Hydroxyl Radicals from NO ₂ and H ₂ O― Journal of Physical Chemistry A, 2010, 114, 8016-8016.	2.5	4
81	Observation of a large negative temperature dependence for rate coefficients of reactions of OH with oxygenated volatile organic compounds studied at 86–112 K. Physical Chemistry Chemical Physics, 2010, 12, 13511.	2.8	51
82	An experimental and theoretical investigation of the competition between chemical reaction and relaxation for the reactions of 1CH2 with acetylene and ethene: implications for the chemistry of the giant planets. Faraday Discussions, 2010, 147, 173.	3.2	43
83	H atom formation from benzene and toluene photoexcitation at 248 nm. Journal of Chemical Physics, 2009, 131, 204304.	3.0	23
84	Comment on "Atmospheric Hydroxyl Radical Production from Electronically Excited NO ₂ and H ₂ O". Science, 2009, 324, 336-336.	12.6	66
85	Kinetic studies of atmospherically relevant silicon chemistry: Part I: Silicon atom reactions. Physical Chemistry Chemical Physics, 2009, 11, 671-678.	2.8	26
86	An experimental confirmation of the products of the reaction between CN radicals and NH3. Physical Chemistry Chemical Physics, 2009, 11, 10824.	2.8	11
87	New Chemical Source of the HCO Radical Following Photoexcitation of Glyoxal, (HCO) < sub>2 < /sub>. Journal of Physical Chemistry A, 2009, 113, 8278-8285.	2.5	14
88	Kinetic studies of atmospherically relevant silicon chemistry. Part II: Silicon monoxide reactions. Physical Chemistry Chemical Physics, 2009, 11, 10945.	2.8	27
89	Studies on the Cl + C2H5I reaction; site specific abstraction reactions and thermodynamics of adduct formation studied by observation of HCL product. Physical Chemistry Chemical Physics, 2009, 11, 10417.	2.8	6
90	Ketone photolysis in the presence of oxygen: A useful source of OH for flash photolysis kinetics experiments. International Journal of Chemical Kinetics, 2008, 40, 504-514.	1.6	31

#	Article	IF	Citations
91	Pulsed Laval nozzle study of the kinetics of OH with unsaturated hydrocarbons at very low temperatures. Physical Chemistry Chemical Physics, 2008, 10, 422-437.	2.8	54
92	Kinetics and Product Branching Ratios of the Reaction of ¹ CH ₂ with H ₂ and D ₂ . Journal of Physical Chemistry A, 2008, 112, 9575-9583.	2.5	23
93	A Kinetic and Spectroscopic Study of the CH ₃ 1â^'Cl and ICH ₂ 1â^'Cl Adducts. Journal of Physical Chemistry A, 2008, 112, 9544-9554.	2.5	11
94	Time-of-flight mass spectrometry for time-resolved measurements. Review of Scientific Instruments, 2007, 78, 034103.	1.3	25
95	Experimental and Master Equation Study of the Kinetics of OH + C2H2: Temperature Dependence of the Limiting High Pressure and Pressure Dependent Rate Coefficientsâ€. Journal of Physical Chemistry A, 2007, 111, 4043-4055.	2.5	44
96	A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration. Physical Chemistry Chemical Physics, 2007, 9, 4114.	2.8	44
97	H Atom Yields from the Reactions of CN Radicals with C2H2, C2H4, C3H6,trans-2-C4H8, andiso-C4H8â€. Journal of Physical Chemistry A, 2007, 111, 6679-6692.	2.5	66
98	OH yields from the CH3CO+O2 reaction using an internal standard. Chemical Physics Letters, 2007, 445, 108-112.	2.6	40
99	Determination of the temperature and pressure dependence of the reaction OH + C2H4from 200–400 K using experimental and master equation analyses. Physical Chemistry Chemical Physics, 2006, 8, 5633-5642.	2.8	42
100	Combined Experimental and Master Equation Investigation of the Multiwell Reaction H + SO2. Journal of Physical Chemistry A, 2006, 110 , $2996-3009$.	2.5	57
101	Study of Acetone Photodissociation over the Wavelength Range 248â^'330 nm: Evidence of a Mechanism Involving Both the Singlet and Triplet Excited Statesâ€. Journal of Physical Chemistry A, 2006, 110, 6742-6756.	2.5	66
102	Determination of the Rate Coefficients for the Reactions IO + NO2+ M (Air) \hat{a} †' IONO2+ M and O(3P) + NO2 \hat{a} †' O2+ NO Using Laser-Induced Fluorescence Spectroscopy. Journal of Physical Chemistry A, 2006, 110, 6995-7002.	2.5	15
103	Wavelength dependent photodissociation of CH3OOH. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 107-113.	3.9	20
104	OH formation from the C2H5CO+O2 reaction: An experimental marker for the propionyl radical. Chemical Physics Letters, 2005, 408, 232-236.	2.6	25
105	The effect of temperature on collision induced intersystem crossing in the reaction of 1CH2 with H2. Proceedings of the Combustion Institute, 2005, 30, 927-933.	3.9	8
106	Photolysis of methylethyl, diethyl and methylvinyl ketones and their role in the atmospheric HOx budget. Faraday Discussions, 2005, 130, 73.	3.2	52
107	Kinetics study of the reaction of iodine monoxide radicals with dimethyl sulfide. Physical Chemistry Chemical Physics, 2005, 7, 2173.	2.8	25
108	A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis. Journal of Geophysical Research, 2005, 110, .	3.3	99

#	Article	IF	Citations
109	Laser induced fluorescence studies of the reactions of O(1D2) with N2, O2, N2O, CH4, H2, CO2, Ar, Kr and n-C4H10. Physical Chemistry Chemical Physics, 2004, 6, 2162.	2.8	59
110	Pressure and temperature-dependent quantum yields for the photodissociation of acetone between 279 and 327.5 nm. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	59
111	Photodissociation of acetone: Atmospheric implications of temperature-dependent quantum yields. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	42
112	Correction to "Pressure and temperature-dependent quantum yields for the photodissociation of acetone between 279 and 327.5 nm― Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	3
113	Evidence for the dominance of collision-induced intersystem crossing in collisions of 1CH2 with O2 and a determination of the H atom yields from 3CH2+O2, using time-resolved detection of H formation by vuvLIF. Chemical Physics Letters, 2003, 372, 295-299.	2.6	27
114	H Atom Branching Ratios from the Reactions of CH with C2H2, C2H4, C2H6, andneo-C5H12at Room Temperature and 25 Torr. Journal of Physical Chemistry A, 2003, 107, 5710-5716.	2.5	48
115	Determination of the High-Pressure Limiting Rate Coefficient and the Enthalpy of Reaction for OH + SO2. Journal of Physical Chemistry A, 2003, 107, 1971-1978.	2.5	67
116	Experimental Rate Measurements for NS + NO, O2 and NO2, and Electronic Structure Calculations of the Reaction Paths for NS + NO2. Journal of Physical Chemistry A, 2002, 106 , $8406-8410$.	2.5	4
117	Redetermination of the rate coefficient for the reaction of O($<$ sup $>$ 1 $<$ /sup $>$ D) with N $<$ sub $>$ 2 $<$ /sub $>$. Geophysical Research Letters, 2002, 29, 35-1.	4.0	22
118	OH formation from CH3CO+O2: a convenient experimental marker for the acetyl radical. Chemical Physics Letters, 2002, 365, 374-379.	2.6	57
119	Collision induced intersystem crossing in methylene on reactive surfaces: application of a new technique to CH2(a 1A1) + H2. Physical Chemistry Chemical Physics, 2001, 3, 2241-2244.	2.8	10
120	Temperature dependence of the reaction of OH with SO. Proceedings of the Combustion Institute, 2000, 28, 2491-2497.	3.9	37
121	Formation of the propargyl radical in the reaction of 1CH2 and C2H2: experiment and modelling. Physical Chemistry Chemical Physics, 2000, 2, 805-812.	2.8	46
122	The reaction of methylidene (CH) with methanol isotopomers. Physical Chemistry Chemical Physics, 2000, 2, 2549-2553.	2.8	18
123	Reaction of CH with H2O:Â Temperature Dependence and Isotope Effect. Journal of Physical Chemistry A, 1999, 103, 5699-5704.	2.5	20
124	Reaction of CH radicals with methane isotopomers. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1473.	1.7	41
125	Experimental and theoretical study of oxidative addition reaction of nickel atom to O–H bond of water. Journal of Chemical Physics, 1994, 100, 423-433.	3.0	49
126	Gas-phase reactions of copper atoms with alkynes: sequential ligand addition via steady-state kinetics. The Journal of Physical Chemistry, 1993, 97, 5298-5304.	2.9	3

#	Article	IF	CITATIONS
127	Gas-phase reaction of copper atoms with tetramethylethylene: sequential ligand addition via non-steady-state kinetics. The Journal of Physical Chemistry, 1993, 97, 5305-5312.	2.9	2
128	Time resolved kinetic studies of the gas-phase reactions of dimethylsilylene with some O-Donor molecules: Part I. Room temperature studies. International Journal of Chemical Kinetics, 1992, 24, 127-143.	1.6	35
129	Gas-phase reactions of copper atoms: formation of copper dicarbonyl, bis(acetylene)copper, and bis(ethylene)copper. The Journal of Physical Chemistry, 1991, 95, 8719-8726.	2.9	71
130	Time-resolved studies of the temperature dependence of gas-phase insertion reactions of phenylsilylene with silicon-hydrogen bonds. The Journal of Physical Chemistry, 1990, 94, 3294-3297.	2.9	25
131	Absolute rate constants for the gas-phase silicon-hydrogen insertion reactions of dimethylsilylene with silane and the methylsilanes in the temperature range 300-600 K. Journal of the American Chemical Society, 1990, 112, 8337-8343.	13.7	45
132	Absolute rate measurements for some gas-phase addition reactions of dimethylsilylene. Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 515.	1.1	37