Yasuhiko Sentoku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8183325/publications.pdf

Version: 2024-02-01

247 papers

7,289 citations

44042 48 h-index 79 g-index

248 all docs 248 docs citations

times ranked

248

2226 citing authors

#	Article	IF	CITATIONS
1	Enhancement of Proton Acceleration by Hot-Electron Recirculation in Thin Foils Irradiated by Ultraintense Laser Pulses. Physical Review Letters, 2002, 88, 215006.	2.9	399
2	Numerical methods for particle simulations at extreme densities and temperatures: Weighted particles, relativistic collisions and reduced currents. Journal of Computational Physics, 2008, 227, 6846-6861.	1.9	293
3	High energy proton acceleration in interaction of short laser pulse with dense plasma target. Physics of Plasmas, 2003, 10, 2009-2015.	0.7	257
4	Laser light and hot electron micro focusing using a conical target. Physics of Plasmas, 2004, 11, 3083-3087.	0.7	184
5	Anomalous Resistivity Resulting from MeV-Electron Transport in Overdense Plasma. Physical Review Letters, 2003, 90, 155001.	2.9	176
6	Plasma devices to guide and collimate a high density of MeV electrons. Nature, 2004, 432, 1005-1008.	13.7	170
7	Stochastic Heating and Acceleration of Electrons in Colliding Laser Fields in Plasma. Physical Review Letters, 2002, 88, 055004.	2.9	166
8	Spatial Uniformity of Laser-Accelerated Ultrahigh-Current MeV Electron Propagation in Metals and Insulators. Physical Review Letters, 2003, 91, 255002.	2.9	166
9	Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targets. Physics of Plasmas, 2011, 18, .	0.7	149
10	High-energy ion generation in interaction. of short laser pulse with high-density plasma. Applied Physics B: Lasers and Optics, 2002, 74, 207-215.	1.1	140
11	Electron Acceleration by a Short Relativistic Laser Pulse at the Front of Solid Targets. Physical Review Letters, 2000, 85, 570-573.	2.9	137
12	Magnetic instability by the relativistic laser pulses in overdense plasmas. Physics of Plasmas, 2000, 7, 689-695.	0.7	119
13	Comparison of Laser Ion Acceleration from the Front and Rear Surfaces of Thin Foils. Physical Review Letters, 2005, 94, 045004.	2.9	119
14	Studies of ultra-intense laser plasma interactions for fast ignition. Physics of Plasmas, 2000, 7, 2014-2022.	0.7	115
15	High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Physical Review E, 2000, 62, 7271-7281.	0.8	114
16	Angular Distributions of Fast Electrons, Ions, and Bremsstrahlung x/\hat{I}^3 -Rays in Intense Laser Interaction with Solid Targets. Physical Review Letters, 2000, 85, 5340-5343.	2.9	114
17	Proton spectra from ultraintense laser–plasma interaction with thin foils: Experiments, theory, and simulation. Physics of Plasmas, 2003, 10, 3283-3289.	0.7	110
18	Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target. Physics of Plasmas, 2001, 8, 4138-4143.	0.7	106

#	Article	IF	CITATIONS
19	Scaling the Yield of Laser-Driven Electron-Positron Jets to Laboratory Astrophysical Applications. Physical Review Letters, 2015, 114, 215001.	2.9	104
20	Bursts of Superreflected Laser Light from Inhomogeneous Plasmas due to the Generation of Relativistic Solitary Waves. Physical Review Letters, 1999, 83, 3434-3437.	2.9	101
21	Plasma jet formation and magnetic-field generation in the intense laser plasma under oblique incidence. Physics of Plasmas, 1999, 6, 2855-2861.	0.7	93
22	Collisional Relaxation of Superthermal Electrons Generated by Relativistic Laser Pulses in Dense Plasma. Physical Review Letters, 2006, 97, 235001.	2.9	93
23	Energetic protons generated by ultrahigh contrast laser pulses interacting with ultrathin targets. Physics of Plasmas, 2007, 14, 030701.	0.7	92
24	Observation of neutron spectrum produced by fast deuterons via ultraintense laser plasma interactions. Physical Review E, 2002, 65, 036413.	0.8	86
25	Collimated Electron Jets by Intense Laser-Beam–Plasma Surface Interaction under Oblique Incidence. Physical Review Letters, 1999, 82, 743-746.	2.9	85
26	Laser-Foil Acceleration of High-Energy Protons in Small-Scale Plasma Gradients. Physical Review Letters, 2007, 99, 015002.	2.9	84
27	Ion acceleration by superintense laser pulses in plasmas. JETP Letters, 1999, 70, 82-89.	0.4	83
28	Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas. Physical Review E, 2002, 65, 046408.	0.8	83
29	Generation of collimated beams of relativistic ions in laser-plasma interactions. JETP Letters, 2000, 71, 407-411.	0.4	81
30	Intensity scaling of hot electron energy coupling in cone-guided fast ignition. Physics of Plasmas, 2008, 15, 056309.	0.7	81
31	Long-Scale Jet Formation with Specularly Reflected Light in Ultraintense Laser-Plasma Interactions. Physical Review Letters, 2000, 84, 674-677.	2.9	78
32	Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nature Communications, 2018, 9, 3937.	5.8	75
33	Fast ignitor research at the Institute of Laser Engineering, Osaka University. Physics of Plasmas, 2001, 8, 2268-2274.	0.7	72
34	Boosting laser-ion acceleration with multi-picosecond pulses. Scientific Reports, 2017, 7, 42451.	1.6	71
35	Particle simulation on x-ray emissions from ultra-intense laser produced plasmas. Physics of Plasmas, 1998, 5, 4366-4372.	0.7	64
36	Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils. Physics of Plasmas, 2007, 14, 053105.	0.7	62

#	Article	IF	CITATIONS
37	Hot-Electron Energy Coupling in Ultraintense Laser-Matter Interaction. Physical Review Letters, 2008, 101, 075004.	2.9	62
38	Increased efficiency of short-pulse laser-generated proton beams from novel flat-top cone targets. Physics of Plasmas, 2008, 15, .	0.7	61
39	Basic and integrated studies for fast ignition. Physics of Plasmas, 2003, 10, 1925-1930.	0.7	58
40	High-energy ion generation by short laser pulses. Plasma Physics Reports, 2004, 30, 473-495.	0.3	57
41	Electron Acceleration in an Ultraintense-Laser-Illuminated Capillary. Physical Review Letters, 2004, 92, 205002.	2.9	56
42	Hot-electron energy coupling in ultraintense laser-matter interaction. Physical Review E, 2009, 79, 066406.	0.8	56
43	Progress of fast ignitor studies and Petawatt laser construction at Osaka University. Physics of Plasmas, 2002, 9, 2202-2207.	0.7	54
44	Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons. Nature Communications, 2018, 9, 280.	5.8	54
45	Dynamic Control over Mega-Ampere Electron Currents in Metals Using Ionization-Driven Resistive Magnetic Fields. Physical Review Letters, 2011, 107, 135005.	2.9	53
46	Laser–plasma interactions for fast ignition. Nuclear Fusion, 2014, 54, 054002.	1.6	51
47	Stimulated photon cascade and condensate in a relativistic laser-plasma interaction. Physics of Plasmas, 2001, 8, 2349-2356.	0.7	50
48	Weakly relativistic one-dimensional laser pulse envelope solitons in a warm plasma. Physics of Plasmas, 2002, 9, 3802-3810.	0.7	48
49	Hot and Cold Electron Dynamics Following High-Intensity Laser Matter Interaction. Physical Review Letters, 2008, 101, 105004.	2.9	48
50	Fast ion acceleration in ultraintense laser interactions with an overdense plasma. Physical Review E, 2004, 69, 036407.	0.8	47
51	Laser Hole Boring and Hot Electron Generation in the Fast Ignition Scheme. Fusion Science and Technology, 2006, 49, 278-296.	0.6	47
52	Intense laser-plasma interactions: New frontiers in high energy density physics. Physics of Plasmas, 2009, 16, .	0.7	45
53	Effect of Target Material on Fast-Electron Transport and Resistive Collimation. Physical Review Letters, 2013, 110, 025001.	2.9	40
54	On the behavior of ultraintense laser produced hot electrons in self-excited fields. Physics of Plasmas, 2007, 14, 040706.	0.7	39

#	Article	IF	CITATIONS
55	Generation of high-amplitude plasma waves for particle acceleration by cross-modulated laser wake fields. Physics of Plasmas, 2002, 9, 3147-3153.	0.7	38
56	Control of an electron beam using strong magnetic field for efficient core heating in fast ignition. Nuclear Fusion, 2015, 55, 053022.	1.6	37
57	The scaling of electron and positron generation in intense laser-solid interactions. Physics of Plasmas, 2015, 22, .	0.7	37
58	Plasma density limits for hole boring by intense laser pulses. Nature Communications, 2018, 9, 623.	5.8	36
59	Effect of Small Focus on Electron Heating and Proton Acceleration in Ultrarelativistic Laser-Solid Interactions. Physical Review Letters, 2020, 124, 084802.	2.9	36
60	Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states. Physical Review Research, 2020, 2, .	1.3	36
61	Higher order terms of radiative damping in extreme intense laser-matter interaction. Physics of Plasmas, 2012, 19, .	0.7	34
62	First demonstration of ARC-accelerated proton beams at the National Ignition Facility. Physics of Plasmas, 2019, 26, .	0.7	34
63	Effects of Relativistic Binary Collisions on PIC Simulation of Laser Plasmas. Journal of the Physical Society of Japan, 1998, 67, 4084-4088.	0.7	33
64	Emittance growth mechanisms for laser-accelerated proton beams. Physical Review E, 2007, 75, 056401.	0.8	31
65	Focus optimization of relativistic self-focusing for anomalous laser penetration into overdense plasmas (super-penetration). Plasma Physics and Controlled Fusion, 2008, 50, 105011.	0.9	31
66	Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas. Physics of Plasmas, 2013, 20, .	0.7	30
67	Parametric instabilities of intense lasers from interaction with relativistic hot plasmas. Physical Review E, 2000, 61, 4362-4369.	0.8	29
68	Broad-range neutron spectra identification in ultraintense laser interactions with carbon-deuterated plasma. Physics of Plasmas, 2005, 12, 110703.	0.7	29
69	Isochoric heating in heterogeneous solid targets with ultrashort laser pulses. Physics of Plasmas, 2007, 14, .	0.7	29
70	Experimental observation of frequency up-conversion by flash ionization. Applied Physics Letters, 2012, 101, .	1.5	29
71	Fast ion acceleration in a foil plasma heated by a multi-picosecond high intensity laser. Physics of Plasmas, 2017, 24, .	0.7	29
72	Generation of subcycle relativistic solitons by super intense laser pulses in plasmas. Physica D: Nonlinear Phenomena, 2001, 152-153, 682-693.	1.3	28

#	Article	IF	CITATIONS
73	Core heating properties in FIREX-l—influence of cone tip. Plasma Physics and Controlled Fusion, 2009, 51, 014002.	0.9	28
74	Direct Heating of a Laser-Imploded Core by Ultraintense Laser-Driven Ions. Physical Review Letters, 2015, 114, 195002.	2.9	28
75	Momentum distribution of accelerated ions in ultra-intense laser–plasma interactions via neutron spectroscopy. Physics of Plasmas, 2003, 10, 3712-3716.	0.7	26
76	Laser acceleration of high-energy protons in variable density plasmas. New Journal of Physics, 2009, 11, 023038.	1.2	26
77	Hot electron generation forming a steep interface in superintense laser-matter interaction. Physics of Plasmas, 2009, 16, 112704.	0.7	26
78	Scaling of resistive guiding of laser-driven fast-electron currents in solid targets. Physical Review E, 2014, 89, 023109.	0.8	26
79	Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse. Physical Review Letters, 2020, 124, 035001.	2.9	26
80	Study of ultraintense laser propagation in overdense plasmas for fast ignition. Physics of Plasmas, 2009, 16, 056307.	0.7	25
81	Petawatt-laser direct heating of uniformly imploded deuterated-polystyrene shell target. Physical Review E, 2005, 71, 016403.	0.8	24
82	Focusing Dynamics of High-Energy Density, Laser-Driven Ion Beams. Physical Review Letters, 2012, 108, 055001.	2.9	24
83	New insights into the laser produced electron–positron pairs. New Journal of Physics, 2013, 15, 065010.	1.2	24
84	Characterization of intense laser-produced fast electrons using hard x-rays via bremsstrahlung. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 224008.	0.6	24
85	Enhanced hot-electron localization and heating in high-contrast ultraintense laser irradiation of microcone targets. Physical Review E, 2009, 79, 036408.	0.8	23
86	Fast Heating of Imploded Core with Counterbeam Configuration. Physical Review Letters, 2016, 117, 055001.	2.9	22
87	Guiding, Focusing, and Collimated Transport of Hot Electrons in a Canal in the Extended Tip of Cone Targets. Physical Review Letters, 2009, 102, 205003.	2.9	21
88	Energy transport and isochoric heating of a low-Z, reduced-mass target irradiated with a high intensity laser pulse. Physics of Plasmas, 2011, 18, .	0.7	21
89	1 Hz fast-heating fusion driver HAMA pumped by a 10 J green diode-pumped solid-state laser. Nuclear Fusion, 2013, 53, 073011.	1.6	21
90	First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation. Scientific Reports, 2013, 3, 2561.	1.6	21

#	Article	IF	CITATIONS
91	Performance comparison of self-focusing with 1053- and 351-nm laser pulses. Physical Review E, 1999, 60, 3283-3288.	0.8	20
92	Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers. Journal of Nuclear Science and Technology, 2002, 39, 1-5.	0.7	20
93	Integrated simulation of magnetic-field-assist fast ignition laser fusion. Plasma Physics and Controlled Fusion, 2017, 59, 014045.	0.9	20
94	Superthermal and Efficient-Heating Modes in the Interaction of a Cone Target with Ultraintense Laser Light. Physical Review Letters, 2009, 102, 045009.	2.9	19
95	Fusion Using Fast Heating of a Compactly Imploded CD Core. Physical Review Letters, 2012, 108, 155001.	2.9	19
96	Anomalous inhibition of electron transport in laser–matter interaction at subrelativistic intensities. Physics of Plasmas, 2004, 11, L69-L72.	0.7	18
97	Kinetic effects and nonlinear heating in intense x-ray-laser-produced carbon plasmas. Physical Review E, 2014, 90, 051102.	0.8	18
98	Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation. Physics of Plasmas, 2015, 22, .	0.7	18
99	Pion production under the action of intense ultrashort laser pulse on a solid target. JETP Letters, 2001, 74, 586-589.	0.4	17
100	Enhanced Propagation for Relativistic Laser Pulses in Inhomogeneous Plasmas Using Hollow Channels. Physical Review Letters, 2010, 105, 225001.	2.9	17
101	Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation. Physical Review E, 2017, 95, 063203.	0.8	17
102	Quadratic conservative scheme for relativistic Vlasov–Maxwell system. Journal of Computational Physics, 2019, 379, 32-50.	1.9	17
103	Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system. Physical Review E, 2020, 102, 033202.	0.8	17
104	Enhancing laser beam performance by interfering intense laser beamlets. Nature Communications, 2019, 10, 2995.	5.8	16
105	Monochromatic 2D <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>K</mml:mi><mml:mi>l±</mml:mi></mml:mrow></mml:math> Emission Images Revealing Short-Pulse Laser Isochoric Heating Mechanism. Physical Review Letters, 2019, 122, 155002.	2.9	16
106	Characterization of fast electron divergence and energy spectrum from modeling of angularly resolved bremsstrahlung measurements. Physics of Plasmas, 2018, 25, .	0.7	15
107	Demonstration of repetitive energetic proton generation by ultra-intense laser interaction with a tape target. High Energy Density Physics, 2020, 37, 100847.	0.4	15
108	Generation of one-cycle laser pulses by use of high-amplitude plasma waves. Physical Review E, 2000, 62, 7258-7265.	0.8	14

#	Article	IF	CITATIONS
109	Transient Electrostatic Fields and Related Energetic Proton Generation with a Plasma Fiber. Physical Review Letters, 2006, 96, 084802.	2.9	14
110	Fast Heating of Cylindrically Imploded Plasmas by Petawatt Laser Light. Physical Review Letters, 2008, 100, 165001.	2.9	14
111	Target Injection and Engagement for Neutron Generation at $1\mathrm{Hz}$. Plasma and Fusion Research, 2013, 8, 1205020-1205020.	0.3	14
112	Effect of soft-core potentials on inverse bremsstrahlung heating during laser matter interactions. Physics of Plasmas, 2017, 24, .	0.7	13
113	Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas. Physical Review E, 2017, 96, 043209.	0.8	13
114	Core heating analysis of fast ignition targets by integrated simulations. European Physical Journal Special Topics, 2006, 133, 385-389.	0.2	13
115	PRESENT STATUS OF TABLE-TOP SHORT-PULSE BEAT WAVE ELECTRON ACCELERATION LASER SYSTEM. International Journal of Modern Physics B, 2007, 21, 572-578.	1.0	12
116	Investigation of high intensity laser proton acceleration with underdense targets. Journal of Physics: Conference Series, 2010, 244, 042023.	0.3	12
117	Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction. Communications Physics, 2019, 2, .	2.0	11
118	Ultra-low emittance, high current proton beams produced with a laser-virtual cathode sheath accelerator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 544, 277-284.	0.7	10
119	Fast Heating of High-Density Plasmas with a Reentrant Cone Concept. Fusion Science and Technology, 2006, 49, 316-326.	0.6	10
120	Hot electron generation from intense laser irradiation of microtipped cone and wedge targets. Physics of Plasmas, 2008, 15, 052701.	0.7	10
121	Fountain effect of laser-driven relativistic electrons inside a solid dielectric. Applied Physics Letters, 2011, 99, 131501.	1.5	10
122	Fast heating of fuel assembled in a spherical deuterated polystyrene shell target by counter-irradiating tailored laser pulses delivered by a HAMA 1 Hz ICF driver. Nuclear Fusion, 2017, 57, 116031.	1.6	10
123	Ultrafast wave-particle energy transfer in the collapse of standing whistler waves. Physical Review E, 2019, 100, 053205.	0.8	10
124	Isochoric heating of hot dense matter by magnetization ofÂfastÂelectrons produced by ultra-intense short pulseÂirradiation. European Physical Journal Special Topics, 2006, 133, 521-523.	0.2	10
125	Laboratory Simulation of Magnetospheric Plasma Shocks. Astrophysics and Space Science, 2005, 298, 299-303.	0.5	9
126	Laser-driven proton acceleration and applications: Recent results. European Physical Journal: Special Topics, 2009, 175, 105-110.	1.2	9

#	Article	IF	CITATIONS
127	1-Hz Bead-Pellet Injection System for Fusion Reaction Engaged by a Laser HAMA Using Ultra-Intense Counter Beams. Fusion Science and Technology, 2019, 75, 36-48.	0.6	9
128	Thermonuclear fusion triggered by collapsing standing whistler waves in magnetized overdense plasmas. Physical Review E, 2020, 101, 013206.	0.8	9
129	Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers Journal of Nuclear Science and Technology, 2002, 39, 1-5.	0.7	9
130	Laboratory simulation of magnetospheric plasma shocks. Advances in Space Research, 2007, 39, 358-369.	1.2	8
131	Numerical study of the advanced target design for FIREX-I. Nuclear Fusion, 2009, 49, 075028.	1.6	8
132	Measuring hot electron distributions in intense laser interaction with dense matter. New Journal of Physics, 2012, 14, 063023.	1.2	8
133	Study of fast ignition target design for ignition and burning experiments. Nuclear Fusion, 2019, 59, 106055.	1.6	8
134	Electron acceleration in dense plasmas heated by a picosecond relativistic laser. Nuclear Fusion, 2019, 59, 086035.	1.6	8
135	Monte Carlo particle collision model for qualitative analysis of neutron energy spectra from anisotropic inertial confinement fusion. High Energy Density Physics, 2020, 36, 100803.	0.4	8
136	Harmonic emission with cyclotron satellite structure due to strong magnetic fields produced by ultra-intense laser–plasma interaction. Physics of Plasmas, 2002, 9, 3193-3196.	0.7	7
137	Autoinjection of electrons into a wake field using a capillary with attached cone. Physics of Plasmas, 2009, 16, 123103.	0.7	7
138	Impact of extended preplasma on energy coupling in kilojoule energy relativistic laser interaction with cone wire targets relevant to fast ignition. New Journal of Physics, 2013, 15, 015020.	1.2	7
139	Intensification of laser-produced relativistic electron beam using converging magnetic fields for ignition in fast ignition laser fusion. High Energy Density Physics, 2020, 36, 100841.	0.4	7
140	Full scale explicit PIC simulation of fast ignition experiment. European Physical Journal Special Topics, 2006, 133, 425-427.	0.2	7
141	Hi-rep. Counter-Illumination Fast Ignition Scheme Fusion. Plasma and Fusion Research, 2013, 8, 3404047-3404047.	0.3	7
142	Propagation of a laser-driven relativistic electron beam inside a solid dielectric. Physical Review E, 2012, 86, 036412.	0.8	6
143	Demonstration of TNSA proton radiography on the National Ignition Facility Advanced Radiographic Capability (NIF-ARC) laser. Plasma Physics and Controlled Fusion, 2021, 63, 124006.	0.9	6
144	Electron cyclotron heating by whistler waves generated during the interaction of a laser pulse with a magnetized plasma. Physics of Plasmas, 2005, 12, 082107.	0.7	5

#	Article	IF	Citations
145	Laser-Driven Proton Beams: Acceleration Mechanism, Beam Optimization, and Radiographic Applications. IEEE Transactions on Plasma Science, 2008, 36, 1833-1842.	0.6	5
146	Efficient laser-ion acceleration from closely stacked ultrathin foils. Physical Review E, 2010, 82, 016405.	0.8	5
147	A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields. Review of Scientific Instruments, 2015, 86, 043502.	0.6	5
148	Validation of thermal conductivity in magnetized plasmas using particle-in-cell simulations. Physics of Plasmas, 2017, 24, .	0.7	5
149	Structure-preserving strategy for conservative simulation of the relativistic nonlinear Landau-Fokker-Planck equation. Physical Review E, 2019, 99, 053309.	0.8	5
150	Multivariate scaling of maximum proton energy in intense laser driven ion acceleration. Physical Review Research, 2021, 3, .	1.3	5
151	Nanoscale subsurface dynamics of solids upon high-intensity femtosecond laser irradiation observed by grazing-incidence x-ray scattering. Physical Review Research, 2022, 4, .	1.3	5
152	Fast ion generation in ultra-intense laser interactions with plasmas. , 2000, , .		4
153	Relativistic Electromagnetic Solitons Produced by Ultrastrong Laser Pulses in Plasmas. AIP Conference Proceedings, 2002, , .	0.3	4
154	Properties of a capillary discharge-produced argon plasma waveguide for shorter wavelength source application. Review of Scientific Instruments, 2011, 82, 103509.	0.6	4
155	Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets. Physics of Plasmas, 2012, 19, .	0.7	4
156	Longitudinal proton probing of ultrafast and high-contrast laser-solid interactions. EPJ Web of Conferences, 2013, 59, 17014.	0.1	4
157	Multilayered polycrystallization in single-crystal YSZ by laser-shock compression. Journal Physics D: Applied Physics, 2015, 48, 325305.	1.3	4
158	Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma. Journal of Physics: Conference Series, 2016, 688, 012010.	0.3	4
159	Observation of ultra-high energy density state with x-ray free electron laser SACLA. High Energy Density Physics, 2020, 36, 100813.	0.4	4
160	Transition of dominant heating process from relativistic electron beam heating to thermal diffusion in an over picoseconds relativistic laser-solid interaction. High Energy Density Physics, 2020, 37, 100829.	0.4	4
161	Lateral confinement of fast electrons and its impact on laser ion acceleration. Physical Review Research, 2021, 3, .	1.3	4
162	Observation of MeV-energy ions from the interaction of over picosecond laser pulses with near-critical density foam targets. High Energy Density Physics, 2020, 36, 100821.	0.4	4

#	Article	IF	Citations
163	Generation of MeV-Range Protons From 30–100 nm Solid Targets by Ultra-High-Contrast Laser Pulses. IEEE Transactions on Plasma Science, 2008, 36, 1817-1820.	0.6	3
164	Heat transport in solid target following relativistic laser–matter interaction. High Energy Density Physics, 2010, 6, 268-273.	0.4	3
165	Characteristics of argon plasma waveguide produced by alumina capillary discharge for short wavelength laser application. Journal of Applied Physics, 2012, 111, 093302.	1.1	3
166	Upgrade of repetitive fast-heating fusion driver HAMA to implode a shell target by using diode pumped solid state laser. Journal of Physics: Conference Series, 2016, 688, 012070.	0.3	3
167	Ponderomotive scaling in the radiative damping regime. Physics of Plasmas, 2017, 24, 103302.	0.7	3
168	Verification of fast heating of core plasmas produced by counter-illumination of implosion lasers. High Energy Density Physics, 2020, 37, 100890.	0.4	3
169	PIC simulation for dense high Z plasma formation with ultrashort petawatt laser including radiation processes. High Energy Density Physics, 2020, 36, 100816.	0.4	3
170	2D monochromatic x-ray imaging for beam monitoring of an x-ray free electron laser and a high-power femtosecond laser. Review of Scientific Instruments, 2021, 92, 013510.	0.6	3
171	WE-E-330D-01: The Production of Ultrafast Bright K-Alpha X-Rays From Laser Produced Plasmas for Medical Imaging. Medical Physics, 2006, 33, 2251-2251.	1.6	3
172	Super-strong magnetic field-dominated ion beam dynamics in focusing plasma devices. Scientific Reports, 2022, 12, 6876.	1.6	3
173	Return Current in the Presence of Two-StreamInstability Due to Uniform Ion Beam Propagatingin a Plasma. Journal of the Physical Society of Japan, 1991, 60, 2627-2631.	0.7	2
174	Particle simulation studies for fast ignitor research â€" collisional effects on laserâ€"plasma interactions. Fusion Engineering and Design, 1999, 44, 233-237.	1.0	2
175	Present Status and Future Prospects of Laser Fusion Research at ILE Osaka University. Plasma Science and Technology, 2004, 6, 2179-2184.	0.7	2
176	Proton Acceleration: New Developments in Energy Increase, Focusing and Energy Selection. AIP Conference Proceedings, 2006, , .	0.3	2
177	Enhanced energy localization and heating in high contrast ultra-intense laser produced plasmas via novel conical micro-target design. Journal of Physics: Conference Series, 2008, 112, 022050.	0.3	2
178	Importance of magnetic resistive fields in the heating of a micro-cone target irradiated by a high intensity laser. European Physical Journal: Special Topics, 2009, 175, 89-95.	1.2	2
179	Theoretical Understanding of Enhanced Proton Energies from Laser-Cone Interactions. AIP Conference Proceedings, 2010, , .	0.3	2
180	Low-Divergent, Energetic Electron Beams from Ultra-Thin Foils. , 2010, , .		2

#	Article	IF	CITATIONS
181	Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology. , 2010, , .		2
182	THz radiation from an ultrashort-laser-induced fast spark dense plasma. EPJ Web of Conferences, 2013, 59, 18007.	0.1	2
183	Progress toward a unified kJ-machine CANDY. Journal of Physics: Conference Series, 2016, 688, 012049.	0.3	2
184	Direct heating of compressed core by ultra-intense laser. Journal of Physics: Conference Series, 2016, 717, 012055.	0.3	2
185	Amorphous nanostructuralization in HOPG by 1014W cm-2laser. Journal of Physics: Conference Series, 2016, 717, 012073.	0.3	2
186	Comment on "In-depth Plasma-Wave Heating of Dense Plasma Irradiated by Short Laser Pulses― Physical Review Letters, 2016, 116, 159501.	2.9	2
187	A spherical shell pellet injection system for repetitive laser engagement. Nuclear Fusion, 2019, 59, 096022.	1.6	2
188	Hot Electron and Ion Spectra in Axial and Transverse Laser Irradiation in the GXII-LFEX Direct Fast Ignition Experiment. Plasma and Fusion Research, 2021, 16, 2404076-2404076.	0.3	2
189	Petawatt Laser Direct Heating of Uniformly Imploded CD Shell Target. Journal of Plasma and Fusion Research, 2005, 81, 384-390.	0.4	2
190	Fast Ignitor Research with Use of Ultra-Intense Laser System Journal of Plasma and Fusion Research, 1999, 75, 452-458.	0.4	2
191	10-Hz beads pellet injection and laser engagement. Nuclear Fusion, 0, , .	1.6	2
192	< title $>$ Neutron enhancement and related recent studies on the fast ignitor at ILE Osaka University $<$ /title $>$. , 2001, , .		1
193	X-ray spectroscopy on energy transport and deposition in ultra-intensity laser produced plasmas. AIP Conference Proceedings, 2002, , .	0.3	1
194	Ultra-fast ionization modeling in laser-plasma interaction. Journal of Physics: Conference Series, 2008, 112, 022108.	0.3	1
195	Hot electron emission limited by self-excited fields from targets irradiated by ultra-intense laser pulses. Journal of Physics: Conference Series, 2008, 112, 022093.	0.3	1
196	Transport of hot electron currents in solid targets irradiated by high intensity short laser pulses. Journal of Physics: Conference Series, 2010, 244, 022016.	0.3	1
197	Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka. , 2010, , .		1
198	Frequency upshift via flash ionization phenomena using semiconductor plasma. EPJ Web of Conferences, 2013, 59, 19004.	0.1	1

#	Article	IF	CITATIONS
199	Target Monitoring and Plasma Diagnosis using 2 <i>i'\overline{\mu}\circ\overline{\mu}\range beam for CANDY. Journal of Physics: Conference Series, 2016, 688, 012036.</i>	0.3	1
200	Electron beam guiding by external magnetic fields in imploded fuel plasma. Journal of Physics: Conference Series, 2016, 717, 012025.	0.3	1
201	Enhanced heat transport in ablation plasma under transverse magnetic field by upper hybrid resonance heating. High Energy Density Physics, 2019, 30, 8-12.	0.4	1
202	Modification of single-crystalline yttria-stabilised zirconia induced by radiation heating from laser-produced plasma. Journal Physics D: Applied Physics, 2019, 52, 105202.	1.3	1
203	Plasma expansion accompanying superthermal electrons in over-picosecond relativistic laser-foil interactions. Plasma Physics and Controlled Fusion, 2020, 62, 014011.	0.9	1
204	Progress of Fast Ignition Study with High Intensity Laser. Journal of the Institute of Electrical Engineers of Japan, 2021, 141, 559-562.	0.0	1
205	Energy Injection for Fast Ignition. Plasma and Fusion Research, 2009, 4, 016-016.	0.3	1
206	Progress of Advanced Fusion Energy Studies with Ultra-Intense Lasers Journal of Plasma and Fusion Research, 2002, 78, 792-798.	0.4	1
207	Influence of Electrostatic and Magnetic Fields on Hot Electron Emission in Ultra-Intense Laser Matter Interactions. Plasma and Fusion Research, 2007, 2, 015-015.	0.3	1
208	Direct heating of a laser-imploded core using ultraintense laser LFEX. Nuclear Fusion, 2017, 57, 076030.	1.6	1
209	Simple Analysis of the Laser-to-Core Energy Coupling Efficiency with Magnetized Fast Isochoric Laser Heating. Plasma and Fusion Research, 2019, 14, 3404138-3404138.	0.3	1
210	Dynamics of ultrafast heated radiative plasmas driven by petawatt laser light. Plasma Physics and Controlled Fusion, 2022, 64, 035004.	0.9	1
211	Isochoric heating of solid-density plasmas beyond keV temperature by fast thermal diffusion with relativistic picosecond laser light. Physical Review E, 2022, 105, .	0.8	1
212	Radial Structure of Two-Stream Instability in Light Ion Beam. Journal of the Physical Society of Japan, 1993, 62, 2012-2020.	0.7	0
213	Laser Envelope Solitons in Plasmas. AIP Conference Proceedings, 2003, , .	0.3	O
214	PIC Simulations of Proton Acceleration with High Intensity Lasers: the Transparency Regime, and Interaction with Underdense Targets. AIP Conference Proceedings, 2006, , .	0.3	0
215	Dynamics of laser-plasma expansion across strong magnetic field., 2007,,.		0
216	Fast heating of wire target attached on entrant hollow cone with ultra-intense laser up to keV order. Journal of Physics: Conference Series, 2008, 112, 022058.	0.3	0

#	Article	IF	Citations
217	Laser-acceleration of high-energy protons in small-scale gradients. Journal of Physics: Conference Series, 2008, 112, 022082.	0.3	0
218	Proton, electron and K-alpha emission from micro-scale copper cone targets., 2009,,.		0
219	Polarization Spectroscopy Modeling With The Inclusion Of Radiation Transport. , 2009, , .		0
220	Creating solid density warm matter by laser heating in external magnetic field., 2009,,.		0
221	Isochoric heating of low-Z, reduced-mass targets with high intensity laser pulse. Journal of Physics: Conference Series, 2010, 244, 022054.	0.3	0
222	Hot electron generation at a steep interface in super intense laser-matter interaction. Journal of Physics: Conference Series, 2010, 244, 022048.	0.3	0
223	Tunable terahertz radiation from an ultrashort-laser-pulse-induced discharge in biased air., 2011,,.		0
224	X-ray spectroscopy to study energy transport of a low-Z, reduced mass target irradiated with a high-intensity laser pulse. High Energy Density Physics, 2011, 7, 117-123.	0.4	0
225	THz wave up-frequency turning by rapidly plasma creation. , 2011, , .		0
226	Generation of THz radiation from a periodic electrostatic field via a relativistic ionization front. , 2011, , .		0
227	THz wave up-frequency turning by rapidly plasma creation. Proceedings of SPIE, 2011, , .	0.8	0
228	Laser-driven relativistic electron beam interaction with solid dielectric., 2012,,.		0
229	Terahertz wave frequency upconversion by rapid plasma creation. , 2013, , .		0
230	Terahertz wave frequency upconversion by rapidly plasma creation., 2013,,.		0
231	Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel. EPJ Web of Conferences, 2013, 59, 17002.	0.1	0
232	Repetitive Solid Spherical Pellet Injection and Irradiation toward the Repetitive-mode Fast-Ignition Fusion miniReactor CANDY Journal of Physics: Conference Series, 2016, 688, 012026.	0.3	0
233	Study of fast electron generation using multi beam of LFEX-class laser. Journal of Physics: Conference Series, 2016, 717, 012037.	0.3	0
234	Velocity measurement using frequency domain interferometer and chirped pulse laser. Proceedings of SPIE, 2017, , .	0.8	0

#	Article	IF	Citations
235	X-ray radiation properties of plasma under interaction of femtosecond laser pulses with $\hat{a}^1/4$ 1022 W/cm2 intensities , 2018, , .		0
236	Two-color laser-plasma interactions for efficient production of non-thermal hot electrons. High Energy Density Physics, 2020, 36, 100843.	0.4	0
237	Effects of mixed laser beam irradiation with different wavelengths on fast electron generation. High Energy Density Physics, 2021, 38, 100918.	0.4	0
238	Pulse duration constraint of whistler waves in magnetized dense plasma. Physical Review E, 2021, 104, 035205.	0.8	0
239	Improvement of ignition and burning target designÂfor fast ignition scheme. Nuclear Fusion, 2021, 61, 126032.	1.6	0
240	Pyramidal targets as an advanced radiation source in laser-solid interactions., 2005,,.		0
241	High Energy Ion Generation in Interaction of Ultra-Intense Laser Pulse with Dense Plasma Target. The Review of Laser Engineering, 2006, 34, 142-147.	0.0	0
242	Modeling of ultra-fast ionization dynamics in intense short pulse laser-solid interaction. European Physical Journal Special Topics, 2006, 133, 967-971.	0.2	0
243	Material Dependence of Energy Spectra of Fast Electrons Generated by Use of High Contrast Laser. The Review of Laser Engineering, 2013, 41, 49.	0.0	0
244	Repetitive 1 Hz Fast-Heating Fusion Driver HAMA Pumped by Diode Pumped Solid State Laser. The Review of Laser Engineering, 2014, 42, 154.	0.0	0
245	Ultraintense laser p1asma and "Fast Ignttor―research. The Review of Laser Engineering, 1999, 27, 66-67.	0.0	0
246	Efficient Fast Heating of Dense Core Plasma by Laser-Driven Strong Magnetic Field. The Review of Laser Engineering, 2019, 47, 536.	0.0	0
247	Plasma concept for generating circularly polarized electromagnetic waves with relativistic amplitude. Physical Review E, 2020, 102, 053214.	0.8	O