Alan Daugherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8183156/publications.pdf

Version: 2024-02-01

324 papers 21,493 citations

75 h-index 134 g-index

343 all docs 343 docs citations

times ranked

343

18954 citing authors

#	Article	IF	Citations
1	Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. Journal of Clinical Investigation, 2000, 105, 1605-1612.	8.2	1,159
2	Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions Journal of Clinical Investigation, 1994, 94, 437-444.	8.2	1,158
3	Use of Nonsteroidal Antiinflammatory Drugs. Circulation, 2007, 115, 1634-1642.	1.6	698
4	Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2605-2613.	2.4	520
5	Mouse Models of Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 429-434.	2.4	436
6	Translating molecular discoveries into new therapies for atherosclerosis. Nature, 2008, 451, 904-913.	27.8	436
7	Aortic Dissection Precedes Formation of Aneurysms and Atherosclerosis in Angiotensin II-Infused, Apolipoprotein E-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1621-1626.	2.4	377
8	Exogenous Interferon-Î ³ Enhances Atherosclerosis in Apolipoprotein Eâ ² /â ² Mice. American Journal of Pathology, 2000, 157, 1819-1824.	3.8	346
9	Interleukin-18 Enhances Atherosclerosis in Apolipoprotein E ^{â^/lâ^'} Mice Through Release of Interferon-l̂3. Circulation Research, 2002, 90, E34-8.	4.5	315
10	Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R943-R949.	1.8	283
11	Differential Effects of Doxycycline, a Broad-Spectrum Matrix Metalloproteinase Inhibitor, on Angiotensin Il–Induced Atherosclerosis and Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 483-488.	2.4	281
12	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e131-e157.	2.4	262
13	Antagonism of AT2 receptors augments Angiotensin Ilâ€induced abdominal aortic aneurysms and atherosclerosis. British Journal of Pharmacology, 2001, 134, 865-870.	5.4	248
14	Hypercholesterolemia Stimulates Angiotensin Peptide Synthesis and Contributes to Atherosclerosis Through the AT 1A Receptor. Circulation, 2004, 110, 3849-3857.	1.6	246
15	Inflammasome Activation Triggers Blood Clotting and Host Death through Pyroptosis. Immunity, 2019, 50, 1401-1411.e4.	14.3	246
16	Interleukin-4 Deficiency Decreases Atherosclerotic Lesion Formation in a Site-Specific Manner in Female LDL Receptorâ [*] /â [*] Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 456-461.	2.4	237
17	The effects of total lymphocyte deficiency on the extent of atherosclerosis in apolipoprotein E-/mice Journal of Clinical Investigation, 1997, 100, 1575-1580.	8.2	225
18	Obesity Promotes Inflammation in Periaortic Adipose Tissue and Angiotensin II-Induced Abdominal Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1458-1464.	2.4	219

#	Article	IF	CITATIONS
19	Proinflammatory Properties of Coplanar PCBs: In Vitro and in Vivo Evidence. Toxicology and Applied Pharmacology, 2002, 181, 174-183.	2.8	215
20	Disruption of the $\langle i \rangle$ Cathepsin K $\langle i \rangle$ Gene Reduces Atherosclerosis Progression and Induces Plaque Fibrosis but Accelerates Macrophage Foam Cell Formation. Circulation, 2006, 113, 98-107.	1.6	211
21	Apolipoprotein E-containing High Density Lipoprotein Promotes Neurite Outgrowth and Is a Ligand for the Low Density Lipoprotein Receptor-related Protein. Journal of Biological Chemistry, 1996, 271, 30121-30125.	3.4	199
22	Mouse Models of Atherosclerosis. American Journal of the Medical Sciences, 2002, 323, 3-10.	1.1	194
23	ANG II infusion promotes abdominal aortic aneurysms independent of increased blood pressure in hypercholesterolemic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1660-H1665.	3.2	192
24	Deletion of p47 phox Attenuates Angiotensin II–Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E–Deficient Mice. Circulation, 2006, 114, 404-413.	1.6	189
25	Chronic Angiotensin II Infusion Promotes Atherogenesis in Low Density Lipoprotein Receptor â^'/â^' Mice. Annals of the New York Academy of Sciences, 1999, 892, 108-118.	3.8	181
26	Vitamin E Inhibits Abdominal Aortic Aneurysm Formation in Angiotensin II–Infused Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1671-1677.	2.4	165
27	Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. Journal of Clinical Investigation, 2008, 118, 984-93.	8.2	164
28	Apolipoprotein E-deficient mice have impaired innate immune responses to Listeria monocytogenes in vivo. Journal of Lipid Research, 1998, 39, 1740-1743.	4.2	163
29	Attenuation of dietâ€induced atherosclerosis in rabbits with a highly selective 15â€lipoxygenase inhibitor lacking significant antioxidant properties. British Journal of Pharmacology, 1997, 120, 1199-1206.	5.4	160
30	IFN- $\langle i \rangle \hat{I}^3 \langle i \rangle$ Deficiency Exerts Gender-Specific Effects on Atherogenesis in Apolipoprotein E $\langle sup \rangle - i - \langle sup \rangle$ Mice. Journal of Interferon and Cytokine Research, 2002, 22, 661-670.	1.2	160
31	Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoEâ $^{\circ}$ /lâ $^{\circ}$ mice. Clinical Science, 2010, 118, 681-689.	4.3	159
32	Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vascular Medicine, 2002, 7, 45-54.	1.5	155
33	Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits Journal of Clinical Investigation, 1995, 96, 2075-2082.	8.2	153
34	Prolonged Infusion of Angiotensin II in apoEâ^'/â^' Mice Promotes Macrophage Recruitment with Continued Expansion of Abdominal Aortic Aneurysm. American Journal of Pathology, 2011, 179, 1542-1548.	3.8	151
35	Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nature Communications, 2013, 4, 2657.	12.8	151
36	Nobiletin, a citrus flavonoid isolated from tangerines, selectively inhibits class A scavenger receptor-mediated metabolism of acetylated LDL by mouse macrophages. Atherosclerosis, 2005, 178, 25-32.	0.8	150

#	Article	IF	Citations
37	Monocyte tissue factor–dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. Journal of Clinical Investigation, 2012, 122, 558-568.	8.2	150
38	Bone Marrow Transplantation Reveals That Recipient AT1a Receptors Are Required to Initiate Angiotensin Il–Induced Atherosclerosis and Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 380-386.	2.4	149
39	Quantification of Atherosclerosis in Mice. , 2003, 209, 293-310.		147
40	Lymphocyte Populations in Atherosclerotic Lesions of ApoE â^'/â^' and LDL Receptor â^'/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1013-1018.	2.4	146
41	Single-Cell Transcriptome Analysis Reveals Dynamic Cell Populations and Differential Gene Expression Patterns in Control and Aneurysmal Human Aortic Tissue. Circulation, 2020, 142, 1374-1388.	1.6	145
42	Structure and functions of angiotensinogen. Hypertension Research, 2016, 39, 492-500.	2.7	137
43	Probucol attenuates the development of aortic atherosclerosis in cholesterolâ€fed rabbits. British Journal of Pharmacology, 1989, 98, 612-618.	5.4	135
44	Depletion of Natural Killer Cell Function Decreases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1049-1054.	2.4	133
45	Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 485-491.	2.4	133
46	Endothelial Cell–Specific Deficiency of Ang II Type 1a Receptors Attenuates Ang II–Induced Ascending Aortic Aneurysms in LDL Receptor ^{â²/â²'} Mice. Circulation Research, 2011, 108, 574-581.	4.5	132
47	COX-2 Up-regulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic / mice. Cardiovascular Research, 2005, 67, 723-735.	3.8	129
48	Smooth Muscle Cells Derived From Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1722-1726.	2.4	128
49	Abdominal aortic aneurysm. Current Opinion in Cardiology, 2015, 30, 566-573.	1.8	127
50	Adipocyte Deficiency of Angiotensinogen Prevents Obesity-Induced Hypertension in Male Mice. Hypertension, 2012, 60, 1524-1530.	2.7	122
51	A specific 15-lipoxygenase inhibitor limits the progression and monocyte–macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit. Atherosclerosis, 1998, 136, 203-216.	0.8	114
52	Orchidectomy, But Not Ovariectomy, Regulates Angiotensin II-Induced Vascular Diseases in Apolipoprotein E-Deficient Mice. Endocrinology, 2004, 145, 3866-3872.	2.8	113
53	Angiotensin II-Mediated Development of Vascular Diseases. Trends in Cardiovascular Medicine, 2004, 14, 117-120.	4.9	113
54	Mechanisms of aortic aneurysm formation: translating preclinical studies into clinical therapies. Heart, 2014, 100, 1498-1505.	2.9	112

#	Article	IF	Citations
55	Interleukin-4 Does Not Influence Development of Hypercholesterolemia or Angiotensin II-Induced Atherosclerotic Lesions in Mice. American Journal of Pathology, 2007, 171, 2040-2047.	3.8	110
56	Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells. Nature Communications, 2018, 9, 5022.	12.8	109
57	T Lymphocytes in Atherosclerosis. Circulation Research, 2002, 90, 1039-1040.	4.5	107
58	Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high-frequency ultrasonography. Journal of Vascular Surgery, 2006, 44, 372-376.	1.1	107
59	Measuring Blood Pressure in Mice using Volume Pressure Recording, a Tail-cuff Method. Journal of Visualized Experiments, 2009, , .	0.3	107
60	Interferon- \hat{l}^3 and the Interferon-Inducible Chemokine CXCL10 Protect Against Aneurysm Formation and Rupture. Circulation, 2009, 119, 426-435.	1.6	105
61	Renin-Angiotensin System and Cardiovascular Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e108-e116.	2.4	104
62	Mechanisms of abdominal aortic aneurysm formation. Current Atherosclerosis Reports, 2002, 4, 222-227.	4.8	102
63	High Density Lipoprotein Protects against Polymicrobe-induced Sepsis in Mice*. Journal of Biological Chemistry, 2013, 288, 17947-17953.	3.4	99
64	Enhanced development of atherosclerosis in cholesterol-fed rabbits by suppression of cell-mediated immunity Journal of Clinical Investigation, 1995, 96, 1389-1394.	8.2	97
65	Androgen Increases AT1a Receptor Expression in Abdominal Aortas to Promote Angiotensin Il–Induced AAAs in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1251-1256.	2.4	94
66	Angiotensin II Induces Region-Specific Medial Disruption during Evolution of Ascending Aortic Aneurysms. American Journal of Pathology, 2014, 184, 2586-2595.	3.8	90
67	AGI-1067: A Multifunctional Phenolic Antioxidant, Lipid Modulator, Anti-Inflammatory and Antiatherosclerotic Agent. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 1116-1123.	2.5	89
68	Scavenger Receptor BI Protects against Septic Death through Its Role in Modulating Inflammatory Response. Journal of Biological Chemistry, 2009, 284, 19826-19834.	3.4	88
69	Reduction in ABCG1 in Type 2 Diabetic Mice Increases Macrophage Foam Cell Formation. Journal of Biological Chemistry, 2006, 281, 21216-21224.	3.4	87
70	The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. British Journal of Pharmacology, 1991, 103, 1013-1018.	5.4	84
71	Macrophage-Expressed Group IIA Secretory Phospholipase A2Increases Atherosclerotic Lesion Formation in LDL Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 263-268.	2.4	84
72	Acid Sphingomyelinase Deficiency Prevents Diet-induced Hepatic Triacylglycerol Accumulation and Hyperglycemia in Mice. Journal of Biological Chemistry, 2009, 284, 8359-8368.	3.4	84

#	Article	IF	Citations
73	Sidestream cigarette smoke accelerates atherogenesis in apolipoprotein Eâ^'/â^' mice. Atherosclerosis, 2001, 156, 49-55.	0.8	80
74	Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R244-R251.	1.8	80
75	Hypercholesterolemia Induced by a PCSK9 Gain-of-Function Mutation Augments Angiotensin Il–Induced Abdominal Aortic Aneurysms in C57BL/6 Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1753-1757.	2.4	80
76	Development of experimental designs for atherosclerosis studies in mice. Methods, 2005, 36, 129-138.	3.8	79
77	Deficiency of the NR4A Orphan Nuclear Receptor NOR1 Decreases Monocyte Adhesion and Atherosclerosis. Circulation Research, 2010, 107, 501-511.	4.5	79
78	Angiotensin II Induces a Region-Specific Hyperplasia of the Ascending Aorta Through Regulation of Inhibitor of Differentiation 3. Circulation Research, 2010, 106, 611-619.	4.5	78
79	The role of catecholamines in the production of ischaemiaâ€induced ventricular arrhythmias in the rat <i>in vivo</i> and <i>in vitro</i> . British Journal of Pharmacology, 1986, 87, 265-277.	5.4	76
80	Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1067-R1077.	1.8	76
81	The Use of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). Circulation, 2005, 111, 1713-1716.	1.6	74
82	Dietary Fat Interacts with PCBs to Induce Changes in Lipid Metabolism in Mice Deficient in Low-Density Lipoprotein Receptor. Environmental Health Perspectives, 2005, 113, 83-87.	6.0	73
83	Angiotensin II increases adipose angiotensinogen expression. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1280-E1287.	3.5	73
84	Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis, 2010, 210, 51-56.	0.8	73
85	Angiotensin-Converting Enzyme 2 Deficiency in Whole Body or Bone Marrow–Derived Cells Increases Atherosclerosis in Low-Density Lipoprotein Receptor ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 758-765.	2.4	73
86	Pioglitazone-Induced Reductions in Atherosclerosis Occur via Smooth Muscle Cell–Specific Interaction With PPARγ. Circulation Research, 2010, 107, 953-958.	4.5	72
87	Complex pathologies of angiotensin II-induced abdominal aortic aneurysms. Journal of Zhejiang University: Science B, 2011, 12, 624-628.	2.8	71
88	MyD88 Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation Independent of Signaling Through Toll-Like Receptors 2 and 4. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2813-2819.	2.4	71
89	Angiotensinogen Exerts Effects Independent of Angiotensin II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 256-265.	2.4	71
90	Updates of Recent Aortic Aneurysm Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e83-e90.	2.4	70

#	Article	IF	Citations
91	Involvement of the renin–angiotensin system in abdominal and thoracic aortic aneurysms. Clinical Science, 2012, 123, 531-543.	4.3	69
92	Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circulation Research, 2017, 121, e53-e79.	4.5	69
93	Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 2018, 8, 51-64.	6.5	69
94	TGF- \hat{I}^2 Neutralization Enhances AngII-Induced Aortic Rupture and Aneurysm in Both Thoracic and Abdominal Regions. PLoS ONE, 2016, 11, e0153811.	2.5	68
95	The role of the renin-angiotensin system in aortic aneurysmal diseases. Current Hypertension Reports, 2008, 10, 99-106.	3.5	65
96	Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. European Heart Journal, 2021, 42, 4373-4385.	2.2	65
97	Deficiency of Scavenger Receptor BI Leads to Impaired Lymphocyte Homeostasis and Autoimmune Disorders in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2543-2551.	2.4	64
98	G2A Deficiency in Mice Promotes Macrophage Activation and Atherosclerosis. Circulation Research, 2009, 104, 318-327.	4.5	63
99	Inhibition of macrophage histone demethylase JMJD3 protects against abdominal aortic aneurysms. Journal of Experimental Medicine, 2021, 218, .	8.5	63
100	Inhibition of cholesteryl ester deposition in macrophages by calcium entry blockers: an effect dissociable from calcium entry blockade. British Journal of Pharmacology, 1987, 91, 113-118.	5.4	62
101	Zinc Deficiency Increases Plasma Lipids and Atherosclerotic Markers in LDL-Receptor–Deficient Mice. Journal of Nutrition, 2005, 135, 2114-2118.	2.9	62
102	Novel Mechanisms of Abdominal Aortic Aneurysms. Current Atherosclerosis Reports, 2012, 14, 402-412.	4.8	62
103	Molecular and Pathophysiological Features of Angiotensinogen: A Mini Review. North American Journal of Medicine & Science, 2011, 4, 183.	3.8	62
104	Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation. Blood, 2011, 118, 3670-3679.	1.4	61
105	Mineralocorticoid Receptor Agonists Induce Mouse Aortic Aneurysm Formation and Rupture in the Presence of High Salt. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1568-1579.	2.4	61
106	Platelet Inhibitors Reduce Rupture in a Mouse Model of Established Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2032-2041.	2.4	61
107	Transient Exposure of Neonatal Female Mice to Testosterone Abrogates the Sexual Dimorphism of Abdominal Aortic Aneurysms. Circulation Research, 2012, 110, e73-85.	4.5	60
108	Smooth Muscle Cell Deletion of Low-Density Lipoprotein Receptor–Related Protein 1 Augments Angiotensin Il–Induced Superior Mesenteric Arterial and Ascending Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 155-162.	2.4	60

#	Article	IF	CITATIONS
109	Interleukin 4 induces transcription of the 15-lipoxygenase I gene in human endothelial cells. Journal of Lipid Research, 2001, 42, 783-791.	4.2	58
110	Female Mice With an XY Sex Chromosome Complement Develop Severe Angiotensin II–Induced Abdominal Aortic Aneurysms. Circulation, 2017, 135, 379-391.	1.6	57
111	Subcutaneous Angiotensin II Infusion using Osmotic Pumps Induces Aortic Aneurysms in Mice. Journal of Visualized Experiments, 2015, , .	0.3	53
112	Role of the Reninâ€Angiotensin System in the Development of Abdominal Aortic Aneurysms in Animals and Humans. Annals of the New York Academy of Sciences, 2006, 1085, 82-91.	3.8	52
113	CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation. Journal of the American Heart Association, 2013, 2, e000065.	3.7	51
114	Polymorphism of class A scavenger receptors in C57BL/6 mice. Journal of Lipid Research, 2000, 41, 1568-1577.	4.2	51
115	Comparative effects of different modes of renin angiotensin system inhibition on hypercholesterolaemiaâ€induced atherosclerosis. British Journal of Pharmacology, 2012, 165, 2000-2008.	5.4	50
116	Increasing Adipocyte Lipoprotein Lipase Improves Glucose Metabolism in High Fat Diet-induced Obesity. Journal of Biological Chemistry, 2015, 290, 11547-11556.	3.4	50
117	Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1168-H1179.	3.2	50
118	Aortic Aneurysms and Dissections Series. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e37-e46.	2.4	49
119	Total lymphocyte deficiency attenuates Angll-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis, 2010, 211, 399-403.	0.8	48
120	Relevance of angiotensin Ilâ€induced aortic pathologies in mice to human aortic aneurysms. Annals of the New York Academy of Sciences, 2011, 1245, 7-10.	3.8	48
121	Macrophage-specific expression of class A scavenger receptors in LDL receptorâ [*] /â [*] mice decreases atherosclerosis and changes spleen morphology. Journal of Lipid Research, 2002, 43, 1201-1208.	4.2	48
122	Conundrum of angiotensin II and TGF- \hat{l}^2 interactions in aortic aneurysms. Current Opinion in Pharmacology, 2013, 13, 180-185.	3.5	47
123	Deficiency of Endogenous Acute Phase Serum Amyloid A Does Not Affect Atherosclerotic Lesions in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 255-261.	2.4	47
124	Short-term interruption of training affects both fasting and post-prandial lipoproteins. Atherosclerosis, 1992, 95, 181-189.	0.8	46
125	Urokinase-Type Plasminogen Activator Deficiency in Bone Marrow–Derived Cells Augments Rupture of Angiotensin Il–Induced Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2845-2852.	2.4	46
126	(Pro)renin Receptor Inhibition Reprograms Hepatic Lipid Metabolism and Protects Mice From Diet-Induced Obesity and Hepatosteatosis. Circulation Research, 2018, 122, 730-741.	4.5	46

#	Article	IF	CITATIONS
127	Angiotensin-Converting Enzyme 2 Decreases Formation and Severity of Angiotensin II–Induced Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2617-2623.	2.4	45
128	Castration of male mice prevents the progression ofÂestablished angiotensin II-induced abdominal aortic aneurysms. Journal of Vascular Surgery, 2015, 61, 767-776.	1.1	45
129	Doxycycline Does Not Influence Established Abdominal Aortic Aneurysms in Angiotensin II-Infused Mice. PLoS ONE, 2012, 7, e46411.	2.5	45
130	Lipoprotein oxidation as a mediator of atherogenesis: insights from pharmacological studies. Cardiovascular Research, 1995, 29, 297-311.	3.8	44
131	Class A Scavenger Receptor-mediated Adhesion and Internalization Require Distinct Cytoplasmic Domains. Journal of Biological Chemistry, 2003, 278, 34219-34225.	3.4	44
132	Aldosterone does not mediate angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. British Journal of Pharmacology, 2005, 144, 443-448.	5.4	44
133	Atherosclerosis and Arterial Blood Pressure in Mice. Current Drug Targets, 2007, 8, 1181-1189.	2.1	44
134	Depletion of Endothelial or Smooth Muscle Cell-Specific Angiotensin II Type 1a Receptors Does Not Influence Aortic Aneurysms or Atherosclerosis in LDL Receptor Deficient Mice. PLoS ONE, 2012, 7, e51483.	2.5	44
135	Cilostazol Attenuates Angiotensin Il–Induced Abdominal Aortic Aneurysms but Not Atherosclerosis in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 903-912.	2.4	44
136	Exome-wide evaluation of rare coding variants using electronic health records identifies new gene–phenotype associations. Nature Medicine, 2021, 27, 66-72.	30.7	44
137	Group X secretory phospholipase A2 augments angiotensin II-induced inflammatory responses and abdominal aortic aneurysm formation in apoE-deficient mice. Atherosclerosis, 2011, 214, 58-64.	0.8	43
138	Thematic review series: The Immune System and Atherogenesis. Cytokine regulation of macrophage functions in atherogenesis. Journal of Lipid Research, 2005, 46, 1812-1822.	4.2	42
139	Angiotensinogen and Megalin Interactions Contribute to Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 150-155.	2.4	42
140	Augmented Urokinase Receptor Expression in Atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 1995, 15, 37-43.	2.4	42
141	Interleukin-4 augments acetylated LDL-induced cholesterol esterification in macrophages. Journal of Lipid Research, 2000, 41, 376-383.	4.2	41
142	Regulation of acetylated low density lipoprotein uptake in macrophages by pertussis toxin-sensitive G proteins. Journal of Lipid Research, 2000, 41, 807-813.	4.2	40
143	Deficiency of Endogenous Acute-Phase Serum Amyloid A Protects apoE ^{â^²/â^²} Mice From Angiotensin Il–Induced Abdominal Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1156-1165.	2.4	39
144	Fibroblast Angiotensin II Type 1a Receptors Contribute to Angiotensin II–Induced Medial Hyperplasia in the Ascending Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1995-2002.	2.4	39

#	Article	IF	CITATIONS
145	Associations of ApoAl and ApoB–Containing Lipoproteins With Angll–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1826-1834.	2.4	39
146	Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, e59-e65.	2.4	39
147	Increased ischemia-reperfusion injury to the heart associated with short-term, diet-induced hypercholesterolemia in rabbits Circulation Research, 1987, 60, 551-559.	4.5	38
148	Protein Kinase C-Delta Mediates Adventitial Cell Migration Through Regulation of Monocyte Chemoattractant Protein-1 Expression in a Rat Angioplasty Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 943-954.	2.4	38
149	Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model. Clinical Science, 2015, 128, 559-565.	4.3	38
150	Overexpression of SR-BI by adenoviral vector promotes clearance of apoA-I, but not apoB, in human apoB transgenic mice. Journal of Lipid Research, 2002, 43, 1421-1428.	4.2	37
151	Angiotensin II and abdominal aortic aneurysms. Current Hypertension Reports, 2004, 6, 442-446.	3. 5	37
152	Citrullus lanatus â€~sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice. Journal of Nutritional Biochemistry, 2013, 24, 882-886.	4.2	37
153	Sex Chromosome Complement Defines Diffuse Versus Focal Angiotensin II–Induced Aortic Pathology. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 143-153.	2.4	37
154	LRP1 (Low-Density Lipoprotein Receptor–Related Protein 1) Regulates Smooth Muscle Contractility by Modulating Ca ²⁺ Signaling and Expression of Cytoskeleton-Related Proteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2651-2664.	2.4	37
155	Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1063-1075.	2.4	36
156	$\hat{l}_{\pm}(1,3)$ Fucosyltransferases FucT-IV and FucT-VII Control Susceptibility to Atherosclerosis in Apolipoprotein Eâ^/â^' Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 1897-1903.	2.4	34
157	Role of metabolism and receptor responsiveness in the attenuated responses to Angiotensin II in mice compared to rats. Regulatory Peptides, 2004, 117, 107-116.	1.9	34
158	Membrane cholesterol modulates the fluid shear stress response of polymorphonuclear leukocytes via its effects on membrane fluidity. American Journal of Physiology - Cell Physiology, 2011, 301, C451-C460.	4.6	34
159	Regional Variation in Aortic AT1b Receptor mRNA Abundance Is Associated with Contractility but Unrelated to Atherosclerosis and Aortic Aneurysms. PLoS ONE, 2012, 7, e48462.	2,5	34
160	Angiotensin II and Abdominal Aortic Aneurysms: An update. Current Pharmaceutical Design, 2015, 21, 4035-4048.	1.9	33
161	Zinc Deficiency Alters Lipid Metabolism in LDL Receptor–Deficient Mice Treated with Rosiglitazone. Journal of Nutrition, 2007, 137, 2339-2345.	2.9	32
162	Loss of Hepatic Angiotensinogen Attenuates Sepsis-Induced Myocardial Dysfunction. Circulation Research, 2021, 129, 547-564.	4. 5	32

#	Article	IF	Citations
163	Transforming Growth Factor $\hat{\epsilon}^2$ in Thoracic Aortic Aneurysms: Good, Bad, or Irrelevant?. Journal of the American Heart Association, 2017, 6, .	3.7	31
164	Effects of Renin-Angiotensin Inhibition on ACE2 (Angiotensin-Converting Enzyme 2) and TMPRSS2 (Transmembrane Protease Serine 2) Expression. Hypertension, 2020, 76, e29-e30.	2.7	31
165	Regulation of Peroxisome Proliferator–Activated Receptor-γ by Angiotensin II Via Transforming Growth Factor-β1–Activated p38 Mitogen-Activated Protein Kinase in Aortic Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 397-405.	2.4	30
166	PD123319 Augments Angiotensin II-Induced Abdominal Aortic Aneurysms through an AT2 Receptor-Independent Mechanism. PLoS ONE, 2013, 8, e61849.	2.5	30
167	Scavenger Receptors are Present on Rabbit Aortic Endothelial Cells In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2369-2375.	2.4	29
168	Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. Journal of Nutritional Biochemistry, 2012, 23, 549-556.	4.2	29
169	Cys18-Cys137 Disulfide Bond in Mouse Angiotensinogen Does Not Affect Angll-Dependent Functions In Vivo. Hypertension, 2015, 65, 800-805.	2.7	29
170	Allergic Lung Inflammation Aggravates Angiotensin II–Induced Abdominal Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 69-77.	2.4	29
171	Metabolism of very low density lipoproteins after cessation of cholesterol feeding in rabbits. A factor potentially contributing to the slow regression of atheromatous plaques Journal of Clinical Investigation, 1986, 77, 1108-1115.	8.2	28
172	Angiotensin II infusion induces site-specific intra-laminar hemorrhage in macrophage colony-stimulating factor-deficient mice. Atherosclerosis, 2006, 186, 282-290.	0.8	27
173	Contributions of Leukocyte Angiotensin-Converting Enzyme to Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2075-2080.	2.4	27
174	Deficiency of the NR4A Orphan Nuclear Receptor NOR1 in Hematopoietic Stem Cells Accelerates Atherosclerosis. Stem Cells, 2014, 32, 2419-2429.	3.2	27
175	Accelerating the Pace of Atherosclerosis Research. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 11-12.	2.4	27
176	Paradoxical reduction of atherosclerosis in apoE-deficient mice with obesity-related type 2 diabetes. Cardiovascular Research, 2003, 59, 854-862.	3.8	26
177	Statins exert differential effects on angiotensin II-induced atherosclerosis, but no benefit for abdominal aortic aneurysms. Atherosclerosis, 2011, 217, 90-96.	0.8	26
178	Ultrasound Imaging of the Thoracic and Abdominal Aorta in Mice to Determine Aneurysm Dimensions. Journal of Visualized Experiments, 2019, , .	0.3	26
179	Freunds adjuvant alone is antiatherogenic in apoE-deficient mice and specific immunization against TNFα confers no additional benefit. Atherosclerosis, 2001, 158, 87-94.	0.8	25
180	Immunostaining of Mouse Atherosclerotic Lesions. Methods in Molecular Medicine, 2007, 139, 77-94.	0.8	25

#	Article	IF	Citations
181	Scavenger Receptor BI and High-Density Lipoprotein Regulate Thymocyte Apoptosis in Sepsis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 966-975.	2.4	24
182	Aortic Strain Correlates With Elastin Fragmentation in Fibrillin-1 Hypomorphic Mice. Circulation Reports, $2019,1,199-205.$	1.0	24
183	Circadian disruption with constant light exposure exacerbates atherosclerosis in male ApolipoproteinE-deficient mice. Scientific Reports, 2020, 10, 9920.	3.3	24
184	Recent Highlights of <i>ATVB</i> . Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 691-694.	2.4	23
185	Twenty Years of Studying AnglI (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 277-288.	2.4	23
186	Weight loss in obese C57BL/6 mice limits adventitial expansion of established angiotensin II-induced abdominal aortic aneurysms. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1932-H1938.	3.2	22
187	Macrophage-specific expression of class A scavenger receptors enhances granuloma formation in the absence of increased lipid deposition. Journal of Lipid Research, 2001, 42, 1049-1055.	4.2	22
188	Mouse Peritoneal Macrophages Contain Abundant ï‰-6 Lipoxygenase Activity That Is Independent of Interleukin-4. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 1488-1494.	2.4	21
189	Deficiency of receptor-associated protein attenuates angiotensin Il-induced atherosclerosis in hypercholesterolemic mice without influencing abdominal aortic aneurysms. Atherosclerosis, 2012, 220, 375-380.	0.8	21
190	Differential effects of dietary sodium intake on blood pressure and atherosclerosis in hypercholesterolemic mice. Journal of Nutritional Biochemistry, 2013, 24, 49-53.	4.2	21
191	Exogenous $17-\hat{l}^2$ estradiol administration blunts progression of established angiotensin II-induced abdominal aortic aneurysms in female ovariectomized mice. Biology of Sex Differences, 2015, 6, 12.	4.1	21
192	Modes of Defining Atherosclerosis in Mouse Models: Relative Merits and Evolving Standards. Methods in Molecular Biology, 2009, 573, 1-15.	0.9	21
193	C323 of SR-BI is required for SR-BI-mediated HDL binding and cholesteryl ester uptake. Journal of Lipid Research, 2011, 52, 2272-2278.	4.2	20
194	Telomerase Deficiency in Bone Marrow–Derived Cells Attenuates Angiotensin II–Induced Abdominal Aortic Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 253-260.	2.4	20
195	Angiotensin-Converting Enzyme in Smooth Muscle Cells Promotes Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1085-1089.	2.4	20
196	Asthma Associates With Human Abdominal Aortic Aneurysm and Rupture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 570-578.	2.4	20
197	Angiotensinogen in hepatocytes contributes to Western diet-induced liver steatosis. Journal of Lipid Research, 2019, 60, 1983-1995.	4.2	20
198	Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. Journal of Vascular Surgery, 2019, 70, 1658-1668.e1.	1.1	20

#	Article	IF	CITATIONS
199	Deficiency of Angiotensin Type 1a Receptors in Adipocytes Reduces Differentiation and Promotes Hypertrophy of Adipocytes in Lean Mice. Endocrinology, 2012, 153, 4677-4686.	2.8	19
200	Single-Cell Analysis of Aneurysmal Aortic Tissue in Patients with Marfan Syndrome Reveals Dysfunctional TGF-Î ² Signaling. Genes, 2022, 13, 95.	2.4	19
201	The role of cholesterol accumulation in prosthetic vascular graft anastomotic intimal hyperplasia. Journal of Vascular Surgery, 1994, 19, 435-445.	1.1	18
202	CD40L Deficiency Protects Against Aneurysm Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 1076-1085.	2.4	18
203	Second Heart Field–Derived Cells Contribute to Angiotensin Il–Mediated Ascending Aortopathies. Circulation, 2022, 145, 987-1001.	1.6	18
204	Imaging of thrombi with tissue-type plasminogen activator rendered enzymatically inactive and conjugated to a residualizing label Circulation, 1992, 85, 288-297.	1.6	17
205	Near-Infrared Spectrometry of Abdominal Aortic Aneurysm in the ApoE-/-Mouse. Analytical Chemistry, 2003, 75, 3650-3655.	6.5	17
206	Augmentation Of The Renin–Angiotensin System By Hyper Cholesterolemia Promotes Vascular Diseases. Future Lipidology, 2008, 3, 625-636.	0.5	17
207	Atherogenic and pulmonary responses of ApoE- and LDL receptor-deficient mice to sidestream cigarette smoke. Toxicology, 2012, 299, 133-138.	4.2	17
208	Updates on Approaches for Studying Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e108-e117.	2.4	17
209	Heterogeneity of aortic smooth muscle cells: A determinant for regional characteristics of thoracic aortic aneurysms?. Journal of Translational Internal Medicine, 2018, 6, 93-96.	2.5	17
210	Macrophage-specific expression of class A scavenger receptors in LDL receptor(-/-) mice decreases atherosclerosis and changes spleen morphology. Journal of Lipid Research, 2002, 43, 1201-8.	4.2	17
211	Shear-Sensitive Regulation of Neutrophil Flow Behavior and Its Potential Impact on Microvascular Blood Flow Dysregulation in Hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 587-593.	2.4	16
212	Telemetric Blood Pressure Assessment in Angiotensin II-Infused ApoE-/- Mice: 28 Day Natural History and Comparison to Tail-Cuff Measurements. PLoS ONE, 2015, 10, e0130723.	2.5	16
213	Antisense oligonucleotides targeting angiotensinogen: insights from animal studies. Bioscience Reports, 2019, 39, .	2.4	16
214	Dynamin-related protein 1 inhibition reduces hepatic PCSK9 secretion. Cardiovascular Research, 2021, 117, 2340-2353.	3.8	16
215	Pulmonary and Atherogenic Effects of Multi-Walled Carbon Nanotubes (MWCNT) in Apolipoprotein-E-Deficient Mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 244-253.	2.3	15
216	Deletion of AT1a (Angiotensin II Type 1a) Receptor or Inhibition of Angiotensinogen Synthesis Attenuates Thoracic Aortopathies in Fibrillin1 ^{C1041G/+} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2538-2550.	2.4	15

#	Article	IF	Citations
217	Dependence of metabolic and structural heterogeneity of cholesterol ester-rich very low density lipoproteins on the duration of cholesterol feeding in rabbits Journal of Clinical Investigation, 1988, 82, 562-570.	8.2	15
218	As Macrophages Indulge, Atherosclerotic Lesions Bulge. Circulation Research, 2008, 102, 1445-1447.	4.5	14
219	Dietary coenzyme Q10 does not protect against cigarette smoke-augmented atherosclerosis in apoE-deficient mice. Free Radical Biology and Medicine, 2010, 48, 1535-1539.	2.9	14
220	Amlodipine Reduces Angli-Induced Aortic Aneurysms and Atherosclerosis in Hypercholesterolemic Mice. PLoS ONE, 2013, 8, e81743.	2.5	14
221	Relaxin and Matrix Metalloproteinase-9 in Angiotensin II-Induced Abdominal Aortic Aneurysms. Circulation Journal, 2017, 81, 888-890.	1.6	14
222	Reporting Sex and Sex Differences in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e171-e184.	2.4	13
223	Unfolding the Story of Proteoglycan Accumulation in Thoracic Aortic Aneurysm and Dissection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1899-1901.	2.4	13
224	No Effect of Hypercholesterolemia on Elastase-Induced Experimental Abdominal Aortic Aneurysm Progression. Biomolecules, 2021, 11, 1434.	4.0	13
225	Probucol reduces the cellularity of aortic intimal thickening at anastomotic regions adjacent to prosthetic grafts in cholesterol-fed rabbits Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 162-167.	3.9	12
226	Genetic Variants of the Renin Angiotensin System: Effects on Atherosclerosis in Experimental Models and Humans. Current Atherosclerosis Reports, 2010, 12, 167-173.	4.8	12
227	Complying With the National Institutes of Health Guidelines and Principles for Rigor and Reproducibility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1303-1304.	2.4	12
228	Deletion of the NR4A nuclear receptor NOR1 in hematopoietic stem cells reduces inflammation but not abdominal aortic aneurysm formation. BMC Cardiovascular Disorders, 2017, 17, 271.	1.7	12
229	Megalin: A bridge connecting kidney, the renin-angiotensin system, and atherosclerosis. Pharmacological Research, 2020, 151, 104537.	7.1	12
230	Interleukin-4 deficiency promotes gallstone formation. Journal of Lipid Research, 2002, 43, 768-771.	4.2	12
231	Macrophage Colony-stimulating Factor Rapidly Enhances \hat{l}^2 -Migrating Very Low Density Lipoprotein Metabolism in Macrophages through Activation of a Gi/o Protein Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 35807-35813.	3.4	11
232	\hat{l}^2 -Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS Vascular Science, 2022, 3, 64-72.	1.1	11
233	Interleukin-4 deficiency promotes gallstone formation. Journal of Lipid Research, 2002, 43, 768-71.	4.2	11
234	Aortic Aneurysms and Dissections Series: Part II. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e78-e86.	2.4	10

#	Article	IF	CITATIONS
235	Renal Angiotensinogen Is Predominantly Liver Derived in Nonhuman Primates. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2851-2853.	2.4	10
236	Noninvasive quantification of postocclusive reactive hyperemia in mouse thigh muscle by near-infrared diffuse correlation spectroscopy. Applied Optics, 2013, 52, 7324.	2.1	9
237	SR-BI (Scavenger Receptor Class B Type 1) Is Critical in Maintaining Normal T-Cell Development and Enhancing Thymic Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2706-2717.	2.4	9
238	Aortic aneurysms in Loeys-Dietz syndrome â€" a tale of two pathways?. Journal of Clinical Investigation, 2014, 124, 79-81.	8.2	9
239	Ghrelin receptor deficiency does not affect diet-induced atherosclerosis in low-density lipoprotein receptor-null mice. Frontiers in Endocrinology, 2011, 2, 67.	3.5	8
240	AT1 Receptor Antagonism to Reduce Aortic Expansion in Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, e10-2.	2.4	8
241	Ginkgo biloba extracts prevent aortic rupture in angiotensin II-infused hypercholesterolemic mice. Acta Pharmacologica Sinica, 2019, 40, 192-198.	6.1	8
242	Annual Report on Sex in Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e1-e9.	2.4	8
243	SR-BI (Scavenger Receptor BI), Not LDL (Low-Density Lipoprotein) Receptor, Mediates Adrenal Stress Response—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1830-1837.	2.4	8
244	Exogenous Vasohibin-2 Exacerbates Angiotensin II-Induced Ascending Aortic Dilation in Mice. Circulation Reports, 2019, 1, 155-161.	1.0	8
245	Platelets Protect From Lipopolysaccharide-Induced Lethal Endotoxemia by Inhibiting Macrophage-Dependent Inflammation Via the Cyclooxygenase 1 (COX1) Signaling Pathway. Blood, 2012, 120, 93-93.	1.4	8
246	Lipopolysaccharide Decreases Scavenger Receptor mRNAIn Vivo. Journal of Interferon and Cytokine Research, 1997, 17, 573-579.	1.2	7
247	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 1997, 8, U11-U12.	2.7	7
248	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2002, 13, 453-455.	2.7	7
249	S100A12 Links to Thoracic Aortic Aneurysms. Circulation Research, 2010, 106, 13-15.	4.5	7
250	Atherosclerosis. Current Opinion in Lipidology, 2015, 26, 152-153.	2.7	7
251	Two Amino Acids Proximate to the Renin Cleavage Site of Human Angiotensinogen Do Not Affect Blood Pressure and Atherosclerosis in Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2108-2113.	2.4	7
252	Authentication of In Situ Measurements for Thoracic Aortic Aneurysms in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2117-2119.	2.4	7

#	Article	IF	CITATIONS
253	Hackam DG, Thiruchelvam D, Redelmeier DA. Angiotensin converting enzyme inhibitors and aortic rupture: population based case control study. Lancet. 2006;368:659-665. Perspectives in Vascular Surgery and Endovascular Therapy, 2007, 19, 342-344.	0.6	6
254	Regulatory B cells, interleukin-10, and atherosclerosis. Current Opinion in Lipidology, 2015, 26, 470-471.	2.7	6
255	Ultrasound Monitoring of Descending Aortic Aneurysms and Dissections in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2557-2559.	2.4	6
256	Monosomy X in Female Mice Influences the Regional Formation and Augments the Severity of Angiotensin Il–Induced Aortopathies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 269-283.	2.4	6
257	Hypercholesterolemia Accelerates Both the Initiation and Progression of Angiotensin II-induced Abdominal Aortic Aneurysms. Annals of Vascular Medicine and Research, 2020, 6, .	0.8	6
258	Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules, 2022, 12, 339.	4.0	6
259	A mini-review on quantification of atherosclerosis in hypercholesterolemic mice. , 2022, 1, 1-6.		6
260	Calcium and calcium slow channel antagonists on cyclic nucleotide levels in the isolated rat heart. Journal of Molecular and Cellular Cardiology, 1981, 13, 843-854.	1.9	5
261	Carbachol and dibutyryl cyclic GMP on the vulnerability to ventricular fibrillation in rat isolated hearts. British Journal of Pharmacology, 1985, 85, 621-627.	5.4	5
262	Roles of lipoproteins in the initiation and development of atherosclerosis., 1985, 31, 237-255.		5
263	Pathogenesis of Atherosclerotic Lesions. Cardiology in Review, 1993, 1, 157-166.	1.4	5
264	Myocyte contracture, vascular resistance, and vascular permeability after global ischemia in isolated hearts from alloxan-induced diabetic rabbits. Diabetes, 1989, 38, 1484-1491.	0.6	5
265	Atherosclerosis. Current Opinion in Lipidology, 2014, 25, 157-158.	2.7	4
266	Perspectives on Cognitive Phenotypes and Models of Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317395.	2.4	4
267	Determinants of the distribution of radiolabeled congeners of tissue-type plasminogen activator and its modification for improved clot imaging. Coronary Artery Disease, 1992, 3, 641-650.	0.7	3
268	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2009, 20, 528-529.	2.7	3
269	Atherosclerosis. Current Opinion in Lipidology, 2013, 24, 455-456.	2.7	3
270	A Color Segmentation-Based Method to Quantify Atherosclerotic Lesion Compositions with Immunostaining. Methods in Molecular Biology, 2017, 1614, 21-30.	0.9	3

#	Article	IF	Citations
271	Response by Daugherty et al to Letter Regarding Article, "Consideration of Sex Differences in Design and Reporting of Experimental Arterial Pathology Studies: A Statement From the Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e101-e102.	2.4	3
272	High Salt and IL (Interleukin)-17 in Aortic Dissection. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 17-19.	2.4	3
273	Angiotensin I Infusion Reveals Differential Effects of Angiotensin-Converting Enzyme in Aortic Resident Cells on Aneurysm Formation. Circulation Journal, 2020, 84, 825-829.	1.6	3
274	Effects of Endogenous Angiotensin II on Abdominal Aortic Aneurysms and Atherosclerosis in Angiotensin II–Infused Mice. Journal of the American Heart Association, 2021, 10, e020467.	3.7	3
275	Illuminating the Importance of Studying Interventions on the Propagation Phase of Experimental Mouse Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1518-1520.	2.4	3
276	Forty-Year Anniversary of <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2353-2356.	2.4	3
277	Vasohibin-2 Aggravates Development of Ascending Aortic Aneurysms but not Abdominal Aortic Aneurysms nor Atherosclerosis in ApoE-Deficient Mice. American Journal of Hypertension, 2021, 34, 467-475.	2.0	3
278	Fludrocortisone Induces Aortic Pathologies in Mice. Biomolecules, 2022, 12, 825.	4.0	3
279	Expression of a PCSK9 Gain-of-Function Mutation in C57BL/6J Mice to Facilitate Angiotensin II-Induced AAAs. Biomolecules, 2022, 12, 915.	4.0	3
280	Do Vivarium Conditions Influence Atherosclerotic Lesion Size?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2339-2340.	2.4	2
281	miRs, miRs in the Wall, Who Is the MostÂCausative of Them All? â^—. Journal of the American College of Cardiology, 2016, 67, 2978-2980.	2.8	2
282	Macrophage-mediated mechanisms in atherosclerosis. Current Opinion in Lipidology, 2017, 28, 286-287.	2.7	2
283	Multifaceted functions of macrophages in atherosclerosis. Current Opinion in Lipidology, 2018, 29, 275-276.	2.7	2
284	One amino acid change of Angiotensin II diminishes its effects on abdominal aortic aneurysm. Bioscience Reports, 2019, 39, .	2.4	2
285	Single-cell transcriptomics as a building block for determining mechanistic insight of abdominal aortic aneurysm formation. Cardiovascular Research, 2021, 117, 1243-1244.	3.8	2
286	IL-5 links adaptive and natural immunity in reducing atherosclerotic disease. Journal of Clinical Investigation, 2004, 114, 317-319.	8.2	2
287	Web of Science's Citation Median Metrics Overcome the Major Constraints of the Journal Impact Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 367-371.	2.4	2
288	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2001, 12, 467-469.	2.7	1

#	Article	IF	CITATIONS
289	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2006, 17, 705-707.	2.7	1
290	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2008, 19, 328-329.	2.7	1
291	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2009, 20, 260-261.	2.7	1
292	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2010, 21, 552-553.	2.7	1
293	Atherosclerosis. Current Opinion in Lipidology, 2011, 22, 322-323.	2.7	1
294	Atherosclerosis. Current Opinion in Lipidology, 2012, 23, 263-264.	2.7	1
295	Atherosclerosis. Current Opinion in Lipidology, 2013, 24, 107-108.	2.7	1
296	Insights into ascending aortic aneurysm pathogenesis using in vivo and ex vivo imaging systems in angiotensin II-infused mice. Journal of Thoracic Disease, 2016, 8, E822-E824.	1.4	1
297	Calcification in atherosclerotic lesions. Current Opinion in Lipidology, 2016, 27, 543-544.	2.7	1
298	Links lipoproteins to chronic kidney disease and atherosclerosis. Current Opinion in Lipidology, 2019, 30, 410-411.	2.7	1
299	Targeting proprotein convertase subtilisin/kexin type 9 in mice and monkeys. Current Opinion in Lipidology, 2019, 30, 154-155.	2.7	1
300	Metformin Does Not Attenuate Angiotensin II-Induced Abdominal Aortic Aneurysms in Low-Density Lipoprotein Receptor-Deficient Mice. Journal of Vascular Surgery, 2020, 71, e26-e27.	1.1	1
301	Ultrasound Monitoring of Thymus Involution in Septic Mice. Ultrasound in Medicine and Biology, 2021, 47, 769-776.	1.5	1
302	From unbiased transcriptomics to understanding the molecular basis of atherosclerosis. Current Opinion in Lipidology, 2021, 32, 328-329.	2.7	1
303	Angiotensinogen in Hepatocytes Contributes to Western Diet-Induced Liver Steatosis. SSRN Electronic Journal, 0, , .	0.4	1
304	Advances in the cell biology of atherogenesis Edited by Alan Daugherty. Coronary Artery Disease, 1994, 5, 185-188.	0.7	0
305	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2004, 15, 93-95.	2.7	0
306	Atherosclerosis: cell biology and lipoproteins. Current Opinion in Lipidology, 2006, 17, 95-97.	2.7	0

#	Article	IF	CITATIONS
307	The New ATVB Editorial Team. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1545-1545.	2.4	O
308	200: Parity is not associated with increased atherosclerosis in a mouse model. American Journal of Obstetrics and Gynecology, 2012, 206, S101.	1.3	0
309	Diverse Contributions From the Initial Discovery of Mechanisms of Angiotensin Il–Induced Oxidation in Smooth Muscle Cells. Circulation Research, 2013, 113, 1283-1285.	4.5	0
310	Changes at the <i>ATVB</i> Journal. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 3-3.	2.4	0
311	Recipients of the 2013 ATVB Early Career Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 881-881.	2.4	0
312	Recipients of the 2015 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1045-1045.	2.4	0
313	Recipients of the 2017 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 737-737.	2.4	0
314	Recipients of the 2018 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 977-977.	2.4	0
315	Drebrin: a new player in angiotensin II-induced aortopathies. Cardiovascular Research, 2018, 114, 1699-1701.	3.8	0
316	Recipients of the 2019 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 835-835.	2.4	0
317	Bitter Melon (Momordica charantia L.) Supplementation Has No Effect on Hypercholesterolemia and Atherosclerosis in Mice. Current Developments in Nutrition, 2020, 4, nzaa148.	0.3	0
318	Recipients of the 2020 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1017-1017.	2.4	0
319	American Heart Association Vascular Disease Strategically Focused Research Network. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e47-e54.	2.4	0
320	Recipients of the 2021 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1595-1595.	2.4	0
321	Angiotensin II-Induced Aortic Aneurysms in Mice. , 2016, , 197-210.		0
322	Recipients of the 2022 Early Career Investigator Awards. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , ATVBAHA122317432.	2.4	0
323	OUP accepted manuscript. Cardiovascular Research, 2022, 118, 1383-1384.	3.8	0
324	(Pro)renin Receptor Inhibition Reduces Plasma Cholesterol and Triglycerides but Does Not Attenuate Atherosclerosis in Atherosclerotic Mice. Frontiers in Cardiovascular Medicine, 2021, 8, 725203.	2.4	0