
Ali M Bahmanpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): A review. Applied Catalysis B: Environmental, 2017, 217, 407-420.	20.2	148
2	Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 2021, 295, 120319.	20.2	110
3	Cu–Al Spinel as a Highly Active and Stable Catalyst for the Reverse Water Gas Shift Reaction. ACS Catalysis, 2019, 9, 6243-6251.	11.2	76
4	Critical review and exergy analysis of formaldehyde production processes. Reviews in Chemical Engineering, 2014, 30, .	4.4	64
5	Formaldehyde production via hydrogenation of carbon monoxide in the aqueous phase. Green Chemistry, 2015, 17, 3500-3507.	9.0	59
6	Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction. Applied Catalysis B: Environmental, 2020, 266, 118669.	20.2	56
7	Hydrogenation of Carbon Monoxide into Formaldehyde in Liquid Media. ACS Sustainable Chemistry and Engineering, 2016, 4, 3970-3977.	6.7	45
8	A comparison of conventional and optimized thermally coupled reactors for Fischer–Tropsch synthesis in GTL technology. Chemical Engineering Science, 2010, 65, 6206-6214.	3.8	43
9	Dynamic optimization of a multi-stage spherical, radial flow reactor for the naphtha reforming process in the presence of catalyst deactivation using differential evolution (DE) method. International Journal of Hydrogen Energy, 2010, 35, 7498-7511.	7.1	40
10	Mathematical modeling of a multi-stage naphtha reforming process using novel thermally coupled recuperative reactors to enhance aromatic production. International Journal of Hydrogen Energy, 2010, 35, 10984-10993.	7.1	40
11	Optimization of hydrogen production via coupling of the Fischer–Tropsch synthesis reaction and dehydrogenation of cyclohexane in GTL technology. Applied Energy, 2011, 88, 2027-2036.	10.1	36
12	Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation. International Journal of Hydrogen Energy, 2010, 35, 12784-12799.	7.1	34
13	The aromatic enhancement in the axialâ€flow spherical packedâ€bed membrane naphtha reformers in the presence of catalyst deactivation. AICHE Journal, 2011, 57, 3182-3198.	3.6	28
14	Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite. Catalysis Science and Technology, 2019, 9, 366-376.	4.1	28
15	A comparison of two different flow types on performance of a thermally coupled recuperative reactor containing naphtha reforming process and hydrogenation of nitrobenzene. International Journal of Hydrogen Energy, 2011, 36, 3483-3495.	7.1	27
16	Enhancement of hydrogen production via coupling of MCH dehydrogenation reaction and methanol synthesis process by using thermally coupled heat exchanger reactor. International Journal of Hydrogen Energy, 2011, 36, 3371-3383.	7.1	27
17	Engineering the ZrO ₂ –Pd Interface for Selective CO ₂ Hydrogenation by Overcoating an Atomically Dispersed Pd Precatalyst. ACS Catalysis, 2020, 10, 12058-12070.	11.2	24
18	A comparative study on a novel combination of spherical and membrane tubular reactors of the catalytic naphtha reforming process. International Journal of Hydrogen Energy, 2011, 36, 505-517.	7.1	22

ALI M BAHMANPOUR

#	Article	IF	CITATIONS
19	Theoretical investigation of aromatics production enhancement in thermal coupling of naphtha reforming and hydrodealkylation of toluene. Chemical Engineering and Processing: Process Intensification, 2011, 50, 893-903.	3.6	20
20	Nature of Synergy between BrÃ,nsted and Lewis Acid Sites in Sn–Beta Zeolites for Polyoxymethylene Dimethyl Ethers Synthesis. ChemSusChem, 2019, 12, 4421-4431.	6.8	20
21	Water Inhibition of Oxymethylene Dimethyl Ether Synthesis over Zeolite H-Beta: A Combined Kinetic and <i>in Situ</i> ATR-IR Study. ACS Catalysis, 2020, 10, 8106-8119.	11.2	20
22	Methanol synthesis in a novel axial-flow, spherical packed bed reactor in the presence of catalyst deactivation. Chemical Engineering Research and Design, 2011, 89, 2457-2469.	5.6	18
23	Increasing the activity of the Cu/CuAl ₂ O ₄ /Al ₂ O ₃ catalyst for the RWGS through preserving the Cu ²⁺ ions. Chemical Communications, 2021, 57, 1153-1156.	4.1	17
24	Selective synthesis of dimethyl ether on eco-friendly K10 montmorillonite clay. Applied Catalysis A: General, 2018, 560, 165-170.	4.3	14
25	Simultaneous hydrogen and aromatics enhancement by obtaining optimum temperature profile and hydrogen removal in naphtha reforming process; a novel theoretical study. International Journal of Hydrogen Energy, 2011, 36, 8316-8326.	7.1	13
26	Boosting the gasoline octane number in thermally coupled naphtha reforming heat exchanger reactor using de optimization technique. Fuel, 2012, 97, 109-118.	6.4	12
27	Insights into the Nature of the Active Sites of Tinâ€Montmorillonite for the Synthesis of Polyoxymethylene Dimethyl Ethers (OME). ChemCatChem, 2019, 11, 3010-3021.	3.7	9
28	A novel reactor concept for thermal integration of naphtha reforming with propane ammoxidation. Chemical Engineering and Processing: Process Intensification, 2019, 146, 107659.	3.6	7
29	Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: The role of hydroxyl groups. Journal of CO2 Utilization, 2022, 57, 101881.	6.8	6
30	A comparative study on optimised and nonâ€optimised axial flow, spherical reactors in naphtha reforming process. Canadian Journal of Chemical Engineering, 2012, 90, 1102-1111.	1.7	2
31	Grafting of Alkali Metals on Fumed Silica for the Catalytic Dehydrogenation of Methanol to Formaldehyde. ChemCatChem, 2021, 13, 3864-3877.	3.7	1