
Xiongwei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182794/publications.pdf Version: 2024-02-01

XIONCWEL 7HIL

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
3	Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9090-9103.	1.7	1,003
4	Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1240-1247.	1.8	982
5	Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19318-19323.	3.3	734
6	Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 2-10.	1.8	587
7	Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine, 2013, 62, 90-101.	1.3	565
8	Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Molecular Neurodegeneration, 2020, 15, 30.	4.4	562
9	Involvement of Oxidative Stress in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2006, 65, 631-641.	0.9	484
10	Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59, 290-294.	2.0	431
11	Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 419-429.	2.1	422
12	Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. Journal of Neurochemistry, 2001, 76, 435-441.	2.1	419
13	Alzheimer's disease: the two-hit hypothesis. Lancet Neurology, The, 2004, 3, 219-226.	4.9	402
14	Oxidative stress signalling in Alzheimer's disease. Brain Research, 2004, 1000, 32-39.	1.1	377
15	Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 363-372.	1.2	357
16	Redox-active iron mediates amyloid- \hat{l}^2 toxicity. Free Radical Biology and Medicine, 2001, 30, 447-450.	1.3	356
17	LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 2012, 21, 1931-1944.	1.4	356
18	The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer's Disease. NeuroSignals, 2002, 11, 270-281.	0.5	336

#	Article	IF	CITATIONS
19	Activation of p38 Kinase Links Tau Phosphorylation, Oxidative Stress, and Cell Cycle-Related Events in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2000, 59, 880-888.	0.9	328
20	Dynamin-Like Protein 1 Reduction Underlies Mitochondrial Morphology and Distribution Abnormalities in Fibroblasts from Sporadic Alzheimer's Disease Patients. American Journal of Pathology, 2008, 173, 470-482.	1.9	308
21	Microtubule Reduction in Alzheimer's Disease and Aging Is Independent of Ï" Filament Formation. American Journal of Pathology, 2003, 162, 1623-1627.	1.9	294
22	Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the â€~two hit' hypothesis. Mechanisms of Ageing and Development, 2001, 123, 39-46.	2.2	293
23	Oxidative stress activates a positive feedback between the γ―and βâ€secretase cleavages of the βâ€amyloid precursor protein. Journal of Neurochemistry, 2008, 104, 683-695.	2.1	287
24	Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport, 1999, 10, 2411-2415.	0.6	278
25	Modulation of Hippocampal Plasticity and Cognitive Behavior by Short-term Blueberry Supplementation in Aged Rats. Nutritional Neuroscience, 2004, 7, 309-316.	1.5	272
26	Role of metal dyshomeostasis in Alzheimer's disease. Metallomics, 2011, 3, 267.	1.0	267
27	Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?. Free Radical Biology and Medicine, 2002, 33, 1475-1479.	1.3	266
28	Parkinson's disease–associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nature Medicine, 2016, 22, 54-63.	15.2	265
29	Ribosomal RNA in Alzheimer Disease Is Oxidized by Bound Redox-active Iron. Journal of Biological Chemistry, 2005, 280, 20978-20986.	1.6	261
30	Alzheimer disease, the two-hit hypothesis: An update. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 494-502.	1.8	251
31	The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 2009, 109, 153-159.	2.1	245
32	Oxidative Stress in Diabetes and Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 763-774.	1.2	244
33	Mitochondria: A therapeutic target in neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 212-220.	1.8	244
34	Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 135-142.	1.8	229
35	Tau phosphorylation in Alzheimer's disease: pathogen or protector?. Trends in Molecular Medicine, 2005, 11, 164-169.	3.5	224
36	The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurology, The, 2011, 10, 275-279.	4.9	197

#	Article	IF	CITATIONS
37	Leptin Reduces Pathology and Improves Memory in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 19, 1155-1167.	1.2	195
38	Insulin-resistant brain state: The culprit in sporadic Alzheimer's disease?. Ageing Research Reviews, 2011, 10, 264-273.	5.0	195
39	In Alzheimer's Disease, Heme Oxygenase Is Coincident with Alz50, an Epitope of Ï., Induced by 4-Hydroxy-2-Nonenal Modification. Journal of Neurochemistry, 2002, 75, 1234-1241.	2.1	189
40	Lipoic Acid and N-acetyl Cysteine Decrease Mitochondrial-Related Oxidative Stress in Alzheimer Disease Patient Fibroblasts. Journal of Alzheimer's Disease, 2007, 12, 195-206.	1.2	176
41	Parkinson's diseaseâ€associated DJâ€l mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. Journal of Neurochemistry, 2012, 121, 830-839.	2.1	174
42	Oxidative Stress and Neurodegeneration. Annals of the New York Academy of Sciences, 2005, 1043, 545-552.	1.8	172
43	Challenging the Amyloid Cascade Hypothesis: Senile Plaques and Amyloid-β as Protective Adaptations to Alzheimer Disease. Annals of the New York Academy of Sciences, 2004, 1019, 1-4.	1.8	169
44	Iron: The Redox-active Center of Oxidative Stress in Alzheimer Disease. Neurochemical Research, 2007, 32, 1640-1645.	1.6	169
45	Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. Journal of Alzheimer's Disease, 2006, 9, 147-153.	1.2	167
46	Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S253-S262.	1.2	166
47	Vascular oxidative stress in Alzheimer disease. Journal of the Neurological Sciences, 2007, 257, 240-246.	0.3	164
48	Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotoxicity Research, 2012, 22, 231-248.	1.3	162
49	DJ-1 regulates the integrity and function of ER-mitochondria association through interaction with IP3R3-Grp75-VDAC1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25322-25328.	3.3	156
50	Cyclin' toward dementia. Journal of Neuroscience Research, 2000, 61, 128-133.	1.3	155
51	Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe?. Acta Neuropathologica, 2003, 105, 524-528.	3.9	155
52	The Roc domain of leucineâ€rich repeat kinase 2 is sufficient for interaction with microtubules. Journal of Neuroscience Research, 2008, 86, 1711-1720.	1.3	155
53	Tau – an inhibitor of deacetylase HDAC6 function. Journal of Neurochemistry, 2009, 109, 1756-1766.	2.1	153
54	NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer's Disease. Molecular Neurobiology, 2018, 55, 1977-1987.	1.9	153

#	Article	IF	CITATIONS
55	Alzheimer Disease Pathology As a Host Response. Journal of Neuropathology and Experimental Neurology, 2008, 67, 523-531.	0.9	150
56	Increased Autophagic Degradation of Mitochondria in Alzheimer Disease. Autophagy, 2007, 3, 614-615.	4.3	147
57	Abortive apoptosis in Alzheimer's disease. Acta Neuropathologica, 2001, 101, 305-310.	3.9	146
58	Metabolic, Metallic, and Mitotic Sources of Oxidative Stress in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 413-420.	2.5	145
59	Amyloid-β in Alzheimer Disease: The Null versus the Alternate Hypotheses. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 823-829.	1.3	144
60	Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 246-252.	1.8	142
61	Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. Journal of Neurochemistry, 2008, 79, 311-318.	2.1	141
62	A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S401-S412.	1.2	141
63	Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neuroscience Letters, 2010, 468, 267-271.	1.0	141
64	Reexamining Alzheimer's Disease: Evidence for a Protective Role for Amyloid-β Protein Precursor and Amyloid-β. Journal of Alzheimer's Disease, 2009, 18, 447-452.	1.2	139
65	Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 525-532.	0.9	138
66	Mitochondrial DNA Oxidative Damage and Repair in Aging and Alzheimer's Disease. Antioxidants and Redox Signaling, 2013, 18, 2444-2457.	2.5	138
67	Alzheimer Disease and the Role of Free Radicals in the Pathogenesis of the Disease. CNS and Neurological Disorders - Drug Targets, 2008, 7, 3-10.	0.8	136
68	Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age, 2008, 30, 209-215.	3.0	133
69	Hibernation, a Model of Neuroprotection. American Journal of Pathology, 2001, 158, 2145-2151.	1.9	131
70	Antioxidant Therapy in Alzheimers Disease: Theory and Practice. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1395-1406.	1.1	129
71	LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson's disease. Neurobiology of Disease, 2010, 40, 73-81.	2.1	128
72	Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathologica, 2006, 111, 503-509.	3.9	127

#	Article	IF	CITATIONS
73	Oxidative Imbalance in Alzheimer's Disease. Molecular Neurobiology, 2005, 31, 205-218.	1.9	126
74	Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2009, 54, 84-88.	1.9	125
75	Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurology, 2021, 78, 30.	4.5	125
76	Insulin is a Two-Edged Knife on the Brain. Journal of Alzheimer's Disease, 2009, 18, 483-507.	1.2	124
77	Inhibition of mitochondrial fragmentation protects against Alzheimer's disease in rodent model. Human Molecular Genetics, 2017, 26, 4118-4131.	1.4	123
78	Amyloid-β-Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegenerative Diseases, 2010, 7, 56-59.	0.8	120
79	Oxidative Stress: The Old Enemy in Alzheimers Disease Pathophysiology. Current Alzheimer Research, 2005, 2, 403-408.	0.7	117
80	Leptin reduces Alzheimer's disease-related tau phosphorylation in neuronal cells. Biochemical and Biophysical Research Communications, 2008, 376, 536-541.	1.0	116
81	Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radical Biology and Medicine, 2005, 38, 746-754.	1.3	115
82	Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1297-R1306.	0.9	114
83	Leptin: A Novel Therapeutic Strategy for Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 731-740.	1.2	114
84	DLP1â€dependent mitochondrial fragmentation mediates 1â€methylâ€4â€phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Aging Cell, 2011, 10, 807-823.	3.0	113
85	Mitochondrial failures in Alzheimer's disease. American Journal of Alzheimer's Disease and Other Dementias, 2004, 19, 345-352.	0.9	111
86	Leptin inhibits glycogen synthase kinase-3β to prevent tau phosphorylation in neuronal cells. Neuroscience Letters, 2009, 455, 191-194.	1.0	110
87	Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance. Journal of Neurochemistry, 2014, 128, 162-172.	2.1	110
88	Phosphorylation of Tau Protein as the Link between Oxidative Stress, Mitochondrial Dysfunction, and Connectivity Failure: Implications for Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-6.	1.9	108
89	Cellular prion protein is essential for oligomeric amyloid-Â-induced neuronal cell death. Human Molecular Genetics, 2012, 21, 1138-1144.	1.4	105
90	All- <i>trans</i> retinoic acid as a novel therapeutic strategy for Alzheimer's disease. Expert Review of Neurotherapeutics, 2009, 9, 1615-1621.	1.4	104

#	Article	IF	CITATIONS
91	Antioxidant approaches for the treatment of Alzheimer's disease. Expert Review of Neurotherapeutics, 2010, 10, 1201-1208.	1.4	103
92	Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer's disease. Redox Report, 2010, 15, 161-168.	1.4	103
93	High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Scientific Reports, 2016, 6, 24873.	1.6	103
94	Alzheimer disease: Evidence for a central pathogenic role of iron-mediated reactive oxygen species. Journal of Alzheimer's Disease, 2004, 6, 165-169.	1.2	100
95	The Earliest Stage of Cognitive Impairment in Transition From Normal Aging to Alzheimer Disease Is Marked by Prominent RNA Oxidation in Vulnerable Neurons. Journal of Neuropathology and Experimental Neurology, 2012, 71, 233-241.	0.9	100
96	Amyloid Beta: The Alternate Hypothesis. Current Alzheimer Research, 2006, 3, 75-80.	0.7	99
97	Oxidative Damage to RNA in Neurodegenerative Diseases. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-6.	3.0	98
98	The cell cycle in Alzheimer disease: A unique target for neuropharmacology. Mechanisms of Ageing and Development, 2005, 126, 1019-1025.	2.2	97
99	Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Translational Neurodegeneration, 2017, 6, 21.	3.6	97
100	Signal Transduction Cascades Associated with Oxidative Stress in Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 11, 143-152.	1.2	95
101	Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neuroscience Bulletin, 2014, 30, 243-252.	1.5	95
102	Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease. Ageing Research Reviews, 2004, 3, 319-326.	5.0	94
103	Insights into amyloid-Î2-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 2007, 43, 1569-1573.	1.3	93
104	MicroRNA-26a/Death-Associated Protein KinaseÂ1 Signaling Induces Synucleinopathy andÂDopaminergic Neuron Degeneration in Parkinson's Disease. Biological Psychiatry, 2019, 85, 769-781.	0.7	92
105	Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. International Journal of Developmental Neuroscience, 2000, 18, 433-437.	0.7	90
106	Apoptosis in Alzheimer Disease: A Mathematical Improbability. Current Alzheimer Research, 2006, 3, 393-396.	0.7	90
107	Increased p27, an essential component of cell cycle control, in Alzheimer's disease. Aging Cell, 2003, 2, 105-110.	3.0	88
108	Intraneuronal amyloid β accumulation and oxidative damage to nucleic acids in Alzheimer disease. Neurobiology of Disease, 2010, 37, 731-737.	2.1	88

#	Article	IF	CITATIONS
109	Posttranslational modifications of α-tubulin in alzheimer disease. Translational Neurodegeneration, 2015, 4, 9.	3.6	88
110	METTL3-dependent RNA m6A dysregulation contributes to neurodegeneration in Alzheimer's disease through aberrant cell cycle events. Molecular Neurodegeneration, 2021, 16, 70.	4.4	87
111	Mitochondrial Dynamics in Alzheimer's Disease. Drugs and Aging, 2010, 27, 181-192.	1.3	86
112	eIF2α Phosphorylation Tips the Balance to Apoptosis during Osmotic Stress. Journal of Biological Chemistry, 2010, 285, 17098-17111.	1.6	83
113	The Neuronal Expression of MYC Causes a Neurodegenerative Phenotype in a Novel Transgenic Mouse. American Journal of Pathology, 2009, 174, 891-897.	1.9	82
114	Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation. PLoS ONE, 2016, 11, e0151615.	1.1	81
115	Physiological regulation of tau phosphorylation during hibernation. Journal of Neurochemistry, 2008, 105, 2098-2108.	2.1	79
116	Streamlined alpha-synuclein RT-QuIC assay for various biospecimens in Parkinson's disease and dementia with Lewy bodies. Acta Neuropathologica Communications, 2021, 9, 62.	2.4	79
117	Activation of the extracellular signalâ€regulated kinase pathway contributes to the behavioral deficit of fragile xâ€syndrome. Journal of Neurochemistry, 2012, 121, 672-679.	2.1	78
118	Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Reviews in Molecular Medicine, 2010, 12, e19.	1.6	77
119	Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Molecular Neurodegeneration, 2018, 13, 5.	4.4	77
120	c-Jun phosphorylation in Alzheimer disease. Journal of Neuroscience Research, 2007, 85, 1668-1673.	1.3	75
121	Alzheimer's Disease: Cerebrovascular Dysfunction, Oxidative stress, and Advanced Clinical Therapies. Journal of Alzheimer's Disease, 2008, 15, 199-210.	1.2	75
122	Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer's Disease?. Molecular Neurobiology, 2010, 41, 87-96.	1.9	75
123	Amyloid-β42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011, 286, 15095-15105.	1.6	75
124	Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. International Journal of Clinical and Experimental Pathology, 2010, 3, 570-81.	0.5	75
125	Cell Cycle Events in Neurons. American Journal of Pathology, 1999, 155, 327-329.	1.9	71
126	Cell Cycle Deregulation in the Neurons of Alzheimer's Disease. Results and Problems in Cell Differentiation, 2011, 53, 565-576.	0.2	71

#	Article	IF	CITATIONS
127	Amyloid-β, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs?. Neurochemistry International, 2002, 40, 527-531.	1.9	70
128	Bivalent Ligand Containing Curcumin and Cholesterol as a Fluorescence Probe for Aβ Plaques in Alzheimer's Disease. ACS Chemical Neuroscience, 2012, 3, 141-146.	1.7	70
129	Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human Molecular Genetics, 2013, 22, 328-344.	1.4	70
130	Ectopic expression of phospho-Smad2 in Alzheimer's disease: Uncoupling of the transforming growth factor-β pathway?. Journal of Neuroscience Research, 2006, 84, 1856-1861.	1.3	68
131	Oxidative Stress and Neuronal Adaptation in Alzheimer Disease: The Role of SAPK Pathways. Antioxidants and Redox Signaling, 2003, 5, 571-576.	2.5	67
132	Mitochondrial biology in Alzheimer's disease pathogenesis. Journal of Neurochemistry, 2010, 114, 933-945.	2.1	66
133	Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Molecular Neurodegeneration, 2008, 3, 13.	4.4	64
134	The role of iron as a mediator of oxidative stress in Alzheimer disease. BioFactors, 2012, 38, 133-138.	2.6	64
135	Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer's disease. Journal of Neuroscience Research, 2004, 75, 698-703.	1.3	63
136	Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia. Journal of Bioenergetics and Biomembranes, 2009, 41, 433-440.	1.0	63
137	Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis. Expert Review of Neurotherapeutics, 2010, 10, 683-691.	1.4	61
138	JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer's disease. Journal of Neurochemistry, 2003, 85, 87-93.	2.1	60
139	Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathologica, 2004, 107, 365-371.	3.9	60
140	Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 507-513.	1.3	59
141	Prevention and Treatment of Alzheimer Disease and Aging: Antioxidants. Mini-Reviews in Medicinal Chemistry, 2007, 7, 171-180.	1.1	59
142	Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1169-1180.	1.1	58
143	LRRK2 protein is a component of lewy bodies. Annals of Neurology, 2006, 60, 617-618.	2.8	57
144	Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Molecular Neurodegeneration, 2007, 2, 2.	4.4	57

#	Article	IF	CITATIONS
145	Neuroprotective effect of cocoa flavonids on in vitro oxidative stress. European Journal of Nutrition, 2009, 48, 54-61.	1.8	57
146	Biomarkers in Alzheimer's disease: past, present and future. Biomarkers in Medicine, 2010, 4, 15-26.	0.6	57
147	Mitochondrial Importance in Alzheimer's, Huntington's and Parkinson's Diseases. Advances in Experimental Medicine and Biology, 2012, 724, 205-221.	0.8	57
148	Perspectives on the Amyloid- \hat{l}^2 Cascade Hypothesis. Journal of Alzheimer's Disease, 2004, 6, 137-145.	1.2	56
149	New Perspectives on Alzheimer's Disease and Nutrition. Journal of Alzheimer's Disease, 2015, 46, 1111-1127.	1.2	56
150	Neurofilamentopathy in Neurodegenerative Diseases. The Open Neurology Journal, 2011, 5, 58-62.	0.4	56
151	BRCA1 May Modulate Neuronal Cell Cycle Re-Entry in Alzheimer Disease. International Journal of Medical Sciences, 2007, 4, 140-145.	1.1	56
152	Distribution, levels, and activation of MEK1 in Alzheimer's disease. Journal of Neurochemistry, 2004, 86, 136-142.	2.1	55
153	Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease. Methods in Molecular Biology, 2010, 610, 419-434.	0.4	55
154	Miro1 deficiency in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2015, 7, 100.	1.7	55
155	Neuroprotective properties of Bcl-w in Alzheimer disease. Journal of Neurochemistry, 2004, 89, 1233-1240.	2.1	54
156	Amyloid-β in Alzheimer's disease: the horse or the cart? Pathogenic or protective?. International Journal of Experimental Pathology, 2005, 86, 133-138.	0.6	54
157	Early Induction of Oxidative Stress in Mouse Model of Alzheimer Disease with Reduced Mitochondrial Superoxide Dismutase Activity. PLoS ONE, 2012, 7, e28033.	1.1	54
158	Protein Disulfide Isomerase in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 485-489.	2.5	53
159	Downâ€regulation of serum gonadotropins is as effective as estrogen replacement at improving menopauseâ€associated cognitive deficits. Journal of Neurochemistry, 2010, 112, 870-881.	2.1	53
160	Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiology of Aging, 2000, 21, 837-841.	1.5	51
161	Aberrant localization of importin $\hat{l}\pm 1$ in hippocampal neurons in Alzheimer disease. Brain Research, 2006, 1124, 1-4.	1.1	51
162	Signaling effect of amyloid-β42 on the processing of AβPP. Experimental Neurology, 2010, 221, 18-25.	2.0	51

#	Article	IF	CITATIONS
163	Autophagy in Alzheimer's disease. Expert Review of Neurotherapeutics, 2010, 10, 1209-1218.	1.4	51
164	Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Translational Neurodegeneration, 2015, 4, 14.	3.6	51
165	Curcumin/Melatonin Hybrid 5-(4-Hydroxy-phenyl)-3-oxo-pentanoic Acid [2-(5-Methoxy-1 <i>H</i> -indol-3-yl)-ethyl]-amide Ameliorates AD-Like Pathology in the APP/PS1 Mouse Model. ACS Chemical Neuroscience, 2015, 6, 1393-1399.	1.7	51
166	The suppression of ghrelin signaling mitigates age-associated thermogenic impairment. Aging, 2014, 6, 1019-1032.	1.4	51
167	Therapeutic Opportunities in Alzheimer Disease: One for all or all for One?. Current Medicinal Chemistry, 2005, 12, 1137-1147.	1.2	49
168	Chronological primacy of oxidative stress in Alzheimer disease. Neurobiology of Aging, 2005, 26, 579-580.	1.5	49
169	Biogenic metallic elements in the human brain?. Science Advances, 2021, 7, .	4.7	48
170	Antigen–antibody dissociation in Alzheimer disease: a novel approach to diagnosis. Journal of Neurochemistry, 2008, 106, 1350-1356.	2.1	47
171	Mitochondria: The Missing Link Between Preconditioning and Neuroprotection. Journal of Alzheimer's Disease, 2010, 20, S475-S485.	1.2	46
172	Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radical Research, 2012, 46, 565-576.	1.5	46
173	Insulin signaling, diabetes mellitus and risk of Alzheimer disease. Journal of Alzheimer's Disease, 2005, 7, 81-84.	1.2	45
174	Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer's Disease Treatment: Rethinking the Current Strategy. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	45
175	Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Scientific Reports, 2016, 6, 20352.	1.6	45
176	A novel origin for granulovacuolar degeneration in aging and Alzheimer's disease: parallels to stress granules. Laboratory Investigation, 2011, 91, 1777-1786.	1.7	44
177	Downâ€regulation of serum gonadotropins but not estrogen replacement improves cognition in agedâ€ovariectomized 3xTg <scp>AD</scp> female mice. Journal of Neurochemistry, 2014, 130, 115-125.	2.1	44
178	Mfn2 Ablation in the Adult Mouse Hippocampus and Cortex Causes Neuronal Death. Cells, 2020, 9, 116.	1.8	44
179	The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau. Neurobiology of Aging, 2002, 23, 855-859.	1.5	43
180	P38 Activation Mediates Amyloid-β Cytotoxicity. Neurochemical Research, 2005, 30, 791-796.	1.6	43

#	Article	IF	CITATIONS
181	Molecular Pathogenesis of Alzheimer's Disease: Reductionist versus Expansionist Approaches. International Journal of Molecular Sciences, 2009, 10, 1386-1406.	1.8	43
182	Activation of Akt by lithium: Pro-survival pathways in aging. Mechanisms of Ageing and Development, 2009, 130, 253-261.	2.2	43
183	Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochemical Society Transactions, 2017, 45, 1053-1066.	1.6	43
184	Sequential formation of different layers of dystrophic neurites in Alzheimer's brains. Molecular Psychiatry, 2019, 24, 1369-1382.	4.1	43
185	Oxidative damage and Alzheimer's disease: Are antioxidant therapies useful?. Drug News and Perspectives, 2005, 18, 5.	1.9	43
186	Melatonin acts as antioxidant and pro-oxidant in an organotypic slice culture model of Alzheimer's disease. NeuroReport, 2001, 12, 1277-1280.	0.6	42
187	Mutant Presenilin 1 Increases the Expression and Activity of BACE1. Journal of Biological Chemistry, 2009, 284, 9027-9038.	1.6	42
188	CXCL12 is involved in α-synuclein-triggered neuroinflammation of Parkinson's disease. Journal of Neuroinflammation, 2019, 16, 263.	3.1	42
189	Apoptotic promoters and inhibitors in Alzheimer's disease: Who wins out?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 251-254.	2.5	41
190	Therapeutic options in Alzheimer's disease. Expert Review of Neurotherapeutics, 2006, 6, 897-910.	1.4	41
191	Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees?. Expert Review of Neurotherapeutics, 2007, 7, 473-485.	1.4	41
192	Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure. PLoS ONE, 2009, 4, e7172.	1.1	41
193	Antimicrobial peptide β-defensin-1 expression is upregulated in Alzheimer's brain. Journal of Neuroinflammation, 2013, 10, 127.	3.1	41
194	Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo : Implications for idiopathic Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1359-1370.	1.8	41
195	LRRK2 in Parkinson's disease and dementia with Lewy bodies. Molecular Neurodegeneration, 2006, 1, 17.	4.4	40
196	Parkinson's disease-associated pathogenic VPS35 mutation causes complex I deficits. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2791-2795.	1.8	40
197	Compensatory responses induced by oxidative stress in Alzheimer disease. Biological Research, 2006, 39, 7-13.	1.5	39
198	Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radical Biology and Medicine, 2012, 52, 699-704.	1.3	38

#	Article	IF	CITATIONS
199	Glutaredoxin deficiency exacerbates neurodegeneration in C. elegans models of Parkinson's disease. Human Molecular Genetics, 2015, 24, 1322-1335.	1.4	38
200	Do Neurons Have a Choice in Death?. American Journal of Pathology, 2001, 158, 1-2.	1.9	37
201	Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Molecular Neurodegeneration, 2006, 1, 14.	4.4	37
202	The effect of mGluR2 activation on signal transduction pathways and neuronal cell survival. Brain Research, 2009, 1249, 244-250.	1.1	37
203	The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2004, 64, 89-98.	0.4	36
204	MAPKs are differentially modulated in arctic ground squirrels during hibernation. Journal of Neuroscience Research, 2005, 80, 862-868.	1.3	35
205	Nanoparticle Delivery of Transition-Metal Chelators to the Brain: Oxidative Stress will Never See it Coming!. CNS and Neurological Disorders - Drug Targets, 2012, 11, 81-85.	0.8	35
206	A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson's disease model. Human Molecular Genetics, 2016, 26, ddw430.	1.4	35
207	Upregulation of Glutaredoxin-1 Activates Microglia and Promotes Neurodegeneration: Implications for Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 25, 967-982.	2.5	35
208	Differential Regulation of Glutamate Receptors in Alzheimer's Disease. NeuroSignals, 2002, 11, 282-292.	0.5	34
209	Heme Catabolism and Heme Oxygenase in Neurodegenerative Disease. Antioxidants and Redox Signaling, 2004, 6, 888-894.	2.5	34
210	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	4.4	34
211	Getting the iron out: Phlebotomy for Alzheimer's disease?. Medical Hypotheses, 2009, 72, 504-509.	0.8	34
212	Beyond Estrogen: Targeting Gonadotropin Hormones in the Treatment of Alzheimers Disease. CNS and Neurological Disorders, 2004, 3, 281-285.	4.3	33
213	Neurons in Alzheimer disease emerge from senescence. Mechanisms of Ageing and Development, 2001, 123, 3-9.	2.2	32
214	The Cell Cycle Regulator Phosphorylated Retinoblastoma Protein Is Associated With Tau Pathology in Several Tauopathies. Journal of Neuropathology and Experimental Neurology, 2011, 70, 578-587.	0.9	32
215	Mitogen- and stress-activated protein kinase 1: Convergence of the ERK and p38 pathways in Alzheimer's disease. Journal of Neuroscience Research, 2005, 79, 554-560.	1.3	30
216	Emerging evidence for the neuroprotective role of α-synuclein. Experimental Neurology, 2006, 200, 1-7.	2.0	30

#	Article	IF	CITATIONS
217	Early induction of c-Myc is associated with neuronal cell death. Neuroscience Letters, 2011, 505, 124-127.	1.0	30
218	The Mitochondrial Dynamics of Alzheimers Disease and Parkinsons Disease Offer Important Opportunities for Therapeutic Intervention. Current Pharmaceutical Design, 2011, 17, 3374-3380.	0.9	30
219	Leucine-Rich Repeat Kinase 2 Colocalizes with α-Synuclein in Parkinson's Disease, but Not Tau-Containing Deposits in Tauopathies. Neurodegenerative Diseases, 2008, 5, 222-224.	0.8	29
220	Mitochondrial preconditioning: a potential neuroprotective strategy. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	29
221	Regulation of DJ-1 by Glutaredoxin 1 in Vivo: Implications for Parkinson's Disease. Biochemistry, 2016, 55, 4519-4532.	1.2	29
222	Oxidative Stress and its Implications for Future Treatments and Management of Alzheimer Disease. International Journal of Biomedical Science, 2010, 6, 225-227.	0.5	29
223	Distribution, levels and phosphorylation of Raf-1 in Alzheimer's disease. Journal of Neurochemistry, 2006, 99, 1377-1388.	2.1	28
224	Abortive oncogeny and cell cycle-mediated events in Alzheimer disease. , 2000, 4, 235-242.		28
225	The neuroprotective effect of human uncoupling protein 2 (hUCP2) requires cAMP-dependent protein kinase in a toxin model of Parkinson's disease. Neurobiology of Disease, 2014, 69, 180-191.	2.1	27
226	Frontiers in Alzheimer's disease therapeutics. Therapeutic Advances in Chronic Disease, 2011, 2, 9-23.	1.1	26
227	Luteinizing hormone downregulation but not estrogen replacement improves ovariectomy-associated cognition and spine density loss independently of treatment onset timing. Hormones and Behavior, 2016, 78, 60-66.	1.0	26
228	Novel therapeutics for Alzheimer's disease: an update. Current Opinion in Drug Discovery & Development, 2010, 13, 235-46.	1.9	26
229	The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering <i>in vivo</i> . Journal of Cell Science, 2021, 134, .	1.2	25
230	Will Preventing Protein Aggregates Live Up to Its Promise as Prophylaxis Against Neurodegenerative Diseases?. Brain Pathology, 2003, 13, 630-638.	2.1	24
231	PKC inhibition is involved in trichosanthin-induced apoptosis in human chronic myeloid leukemia cell line K562. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 63-70.	1.1	24
232	The rs3756063 polymorphism is associated with SNCA methylation in the Chinese Han population. Journal of the Neurological Sciences, 2016, 367, 11-14.	0.3	24
233	Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 134-46.	0.5	24
234	Mitochondrial Abnormalities and Oxidative Imbalance in Neurodegenerative Disease. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 16pe-16.	0.9	23

#	Article	IF	CITATIONS
235	Microbial origin of glutamate, hibernation and tissue trauma: an in vivo microdialysis study. Journal of Neuroscience Methods, 2002, 119, 121-128.	1.3	22
236	A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD. Antioxidants and Redox Signaling, 2013, 19, 1662-1675.	2.5	22
237	<i>VPS35</i> D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell, 2021, 20, e13347.	3.0	21
238	Amyloid-β Vaccination: Testing the Amyloid Hypothesis?. American Journal of Pathology, 2006, 169, 738-739.	1.9	20
239	The Cell Cycle and Hormonal Fluxes in Alzheimer Disease: A Novel Therapeutic Target. Current Pharmaceutical Design, 2006, 12, 691-697.	0.9	20
240	Tipping the Apoptotic Balance in Alzheimer's Disease: The Abortosis Concept. Cell Biochemistry and Biophysics, 2003, 39, 249-256.	0.9	19
241	The (un)balance between metabolic and oxidative abnormalities and cellular compensatory responses in Alzheimer disease. Mechanisms of Ageing and Development, 2006, 127, 501-506.	2.2	19
242	Dynaminâ€like protein 1 cleavage by calpain in Alzheimer's disease. Aging Cell, 2019, 18, e12912.	3.0	19
243	Staying Connected. American Journal of Pathology, 2004, 165, 1461-1464.	1.9	18
244	Alzheimer's disease: an intracellular movement disorder?. Trends in Molecular Medicine, 2005, 11, 391-393.	3.5	18
245	Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Neuroscience Letters, 2009, 460, 180-184.	1.0	18
246	Widespread distribution of reticulon-3 in various neurodegenerative diseases. Neuropathology, 2010, 30, 574-579.	0.7	18
247	Ionizing radiation causes increased tau phosphorylation in primary neurons. Journal of Neurochemistry, 2014, 131, 86-93.	2.1	18
248	Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Neuropharmacology, 2018, 143, 176-185.	2.0	18
249	Cyclin' toward dementia. , 2000, 61, 128.		18
250	Mislocalization of CDK11/PITSLRE, a regulator of the G2/M phase of the cell cycle, in Alzheimer disease. Cellular and Molecular Biology Letters, 2011, 16, 359-72.	2.7	17
251	Therapeutic potential of oxidant mechanisms in Alzheimer's disease. Expert Review of Neurotherapeutics, 2004, 4, 995-1004.	1.4	16
252	Glycogen Synthase Kinase 3: A Point of Integration in Alzheimer's Disease and a Therapeutic Target?. International Journal of Alzheimer's Disease, 2012, 2012, 1-4.	1.1	16

#	Article	IF	CITATIONS
253	Clinical and imaging characteristics of late onset mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurocase, 2016, 22, 476-483.	0.2	16
254	Heme Deficiency in Alzheimer's Disease: A Possible Connection to Porphyria. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-5.	3.0	15
255	Mitochondrial Drugs for Alzheimer Disease. Pharmaceuticals, 2009, 2, 287-298.	1.7	15
256	Genome-wide analysis of DNA methylation during antagonism of DMOG to MnCl2-induced cytotoxicity in the mouse substantia nigra. Scientific Reports, 2016, 6, 28933.	1.6	15
257	Prion Protein Protects against Renal Ischemia/Reperfusion Injury. PLoS ONE, 2015, 10, e0136923.	1.1	15
258	Ferric Cycle Activity and Alzheimer Disease. Current Neurovascular Research, 2005, 2, 261-267.	0.4	14
259	Tau modifiers as therapeutic targets for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 211-215.	1.8	14
260	The Key Role of Oxidative Stress in Alzheimer's Disease. , 2007, , 267-281.		14
261	Insights into the Impact of a Membrane-Anchoring Moiety on the Biological Activities of Bivalent Compounds As Potential Neuroprotectants for Alzheimer's Disease. Journal of Medicinal Chemistry, 2018, 61, 777-790.	2.9	14
262	Ascorbate distribution during hibernation is independent of ascorbate redox state. Free Radical Biology and Medicine, 2004, 37, 511-520.	1.3	13
263	Treating the Lesions, Not the Disease. American Journal of Pathology, 2007, 170, 1457-1459.	1.9	13
264	Increased Expression of p130 in Alzheimer Disease. Neurochemical Research, 2007, 32, 639-644.	1.6	13
265	The essential role of ERK in 4â€oxoâ€2â€nonenalâ€mediated cytotoxicity in SHâ€SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2009, 108, 1434-1441.	2.1	13
266	Divalent metal transporter, iron, and Parkinson's disease: A pathological relationship. Cell Research, 2010, 20, 397-399.	5.7	13
267	CD3 in Lewy pathology: does the abnormal recall of neurodevelopmental processes underlie Parkinson's disease. Journal of Neural Transmission, 2011, 118, 23-26.	1.4	13
268	Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurology, 2012, 7, 287-305.	0.9	13
269	Alzheimer's disease and the cell cycle. Acta Neurobiologiae Experimentalis, 2004, 64, 107-12.	0.4	13
270	Vitamin C is a source of oxoaldehyde and glycative stress in ageâ€related cataract and neurodegenerative diseases. Aging Cell, 2020, 19, e13176.	3.0	12

#	Article	IF	CITATIONS
271	A Second Look into the Oxidant Mechanisms in Alzheimers Disease. Current Neurovascular Research, 2005, 2, 179-184.	0.4	11
272	The sterol regulatory elementâ€binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathology, 2019, 29, 530-543.	2.1	11
273	Ethnicity-specific and overlapping alterations of brain hydroxymethylome in Alzheimer's disease. Human Molecular Genetics, 2020, 29, 149-158.	1.4	11
274	Neuropathology in Alzheimer's Disease: Awaking from a Hundred-Year-Old Dream. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe10-pe10.	0.9	11
275	Mfn2 Overexpression Attenuates MPTP Neurotoxicity In Vivo. International Journal of Molecular Sciences, 2021, 22, 601.	1.8	10
276	Oxidative Stress Signaling in Blast TBI-Induced Tau Phosphorylation. Antioxidants, 2021, 10, 955.	2.2	10
277	Unexpected Implication of SRP and AGO2 in Parkinson's Disease: Involvement in Alpha-Synuclein Biogenesis. Cells, 2021, 10, 2792.	1.8	10
278	Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets. Pharmaceuticals, 2009, 2, 250-286.	1.7	9
279	Heme-a, the heme prosthetic group of cytochrome c oxidase, is increased in Alzheimer's disease. Neuroscience Letters, 2009, 461, 302-305.	1.0	8
280	Conditional Haploinsufficiency of β-Catenin Aggravates Neuronal Damage in a Paraquat-Based Mouse Model of Parkinson Disease. Molecular Neurobiology, 2019, 56, 5157-5166.	1.9	8
281	Altered redox balance in disease: Can we change the new equilibria?. Annals of Neurology, 2009, 65, 121-123.	2.8	7
282	Mark Anthony Smith (1965–2010): Visionary, Alzheimer Researcher, and Editor-in-Chief of the Journal of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 1-2.	1.2	7
283	HDL mimetic peptides affect apolipoprotein E metabolism: equal supplement or functional enhancer?. Journal of Neurochemistry, 2018, 147, 580-583.	2.1	7
284	Isoform-specific roles of AMPK catalytic α subunits in Alzheimer's disease. Journal of Clinical Investigation, 2020, 130, 3403-3405.	3.9	7
285	Iron: A Pathological Mediator of Alzheimer Disease?. Agro Food Industry Hi-tech, 2009, 19, 33-36.	1.0	7
286	Altered hydroxymethylome in the substantia nigra of Parkinson's disease. Human Molecular Genetics, 2022, 31, 3494-3503.	1.4	7
287	Redox Active Iron at the Center of Oxidative Stress in Alzheimer Disease. Letters in Drug Design and Discovery, 2005, 2, 479-482.	0.4	6
288	Presenilin mutation: A deadly first hit in Alzheimer disease. Free Radical Biology and Medicine, 2006, 40, 737-739.	1.3	6

#	Article	IF	CITATIONS
289	Amyloid-β, BACE, and oxidative stress in Alzheimer's disease, a commentary on "The different aggregation state of beta-amyloid 1-42 mediates different effects on oxidative stress, neurodegeneration and BACE-1 expression― Free Radical Biology and Medicine, 2006, 41, 188-189.	1.3	6
290	Modulation of Parkinson's Disease Associated Protein Rescues Alzheimer's Disease Degeneration. Journal of Alzheimer's Disease, 2016, 55, 73-75.	1.2	6
291	Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy. , 2010, , 305-323.		5
292	Ethanol-Fixed, Paraffin-Embedded Tissue Imaging: Implications for Alzheimer's Disease Research. Journal of the American Society for Mass Spectrometry, 2020, 31, 2416-2420.	1.2	5
293	Apoptotic and Oxidative Indicators in Alzheimer's Disease. , 2002, , 225-246.		4
294	Amyotrophic lateral sclerosis: a novel hypothesis involving a gained 'loss of function' in the JNK/SAPK pathway. Redox Report, 2003, 8, 129-133.	1.4	4
295	Neurogenesis in Human Hippocampus: Implications for Alzheimer Disease Pathogenesis. Neuroembryology and Aging, 2006, 4, 175-182.	0.1	4
296	Natural Oxidant Balance in Parkinson Disease. Archives of Neurology, 2009, 66, 1445.	4.9	4
297	Memantine. American Journal of Pathology, 2010, 176, 540-541.	1.9	4
298	Evidence for Oxidative Damage in the Autistic Brain. , 2009, , 35-46.		4
299	The role of E2F1 in the development of hypertrophic cardiomyopathy. International Journal of Clinical and Experimental Pathology, 2011, 4, 521-5.	0.5	4
300	Neurofibrillary Tangle Formation as a Protective Response to Oxidative Stress in Alzheimer's Disease. , 2009, , 103-113.		3
301	Potential Role of Iron in a Mediterranean-style Diet. Archives of Neurology, 2010, 67, 1286.	4.9	3
302	Mitochondrial dysfunction: Mitochondrial diseases and pathways with a focus on neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 1.	1.8	3
303	The origin of oxidative stress in neurodegenerative disease: Mark Anthony Smith 1965–2010. Free Radical Biology and Medicine, 2011, 51, 248-249.	1.3	3
304	Oxidative Damage and Antioxidant Responses in Alzheimer's Disease. , 0, , 371-378.		2
305	Signal Transduction in Alzheimer's Disease. NeuroSignals, 2002, 11, 235-235.	0.5	2
306	Iron chelation and nanoparticle target delivery in the development of new multifunctional disease-modifying drugs for Alzheimer's disease. Therapeutic Delivery, 2012, 3, 571-574.	1.2	2

#	Article	IF	CITATIONS
307	ApoE and mitochondrial dysfunction. Neurology, 2020, 94, 1009-1010.	1.5	2
308	Oxidative Stress in Alzheimer's Disease: A Critical Appraisal of the Causes and the Consequences. , 2011, , 211-220.		2
309	Treatment advances in Alzheimer's disease based on the oxidative stress model. F1000 Medicine Reports, 2009, 1, .	2.9	2
310	Two Hits and You're Out? A Novel Mechanistic Hypothesis of Alzheimer Disease. , 2008, , 191-204.		2
311	Pathology's new role: defining disease process and protective responses. International Journal of Clinical and Experimental Pathology, 2008, 1, 1-4.	0.5	2
312	The Fallacy of Amyloid and Cognition in Alzheimer???s Disease. Drugs and Aging, 2006, 23, 179.	1.3	1
313	Sequestration of p27 within the cytoplasm of cardiac myocytes in chronic ischemic heart disease: pathogenic implications for ischemic cardiomyopathy. Age, 2006, 28, 85-91.	3.0	1
314	Birth of JAD: 20 Years Later. Journal of Alzheimer's Disease, 2018, 62, 901-901.	1.2	1
315	Oxidative Stress and Neuropsychiatric Disorders in the Life Spectrum. , 2016, , 157-166.		1
316	Protective effects of phosphodiesterase 2 inhibitor against Al̂²1-42 induced neuronal toxicity. Neuropharmacology, 2022, 213, 109128.	2.0	1
317	Alzheimer's disease therapy: a moving target. Therapy: Open Access in Clinical Medicine, 2011, 8, 457-458.	0.2	0
318	Mark A. Smith, PhD: Renegade Scientist and Visionary. Journal of Neuropathology and Experimental Neurology, 2011, 70, 495-497.	0.9	0
319	Neurodegenerative processes in Alzheimer's disease: an overview of pathogenesis with strategic biomarker potential. Future Neurology, 2011, 6, 173-185.	0.9	0
320	The concept of redox balance in Alzheimer's disease: Mark Anthony Smith 1965–2010. Redox Report, 2011, 16, 47-48.	1.4	0
321	Mark Smith: Pioneer of Alzheimer Disease Research. Neurotoxicity Research, 2012, 22, 181-181.	1.3	0
322	Mark A. Smith: neurocytochemistry innovator. Journal of Neurochemistry, 2012, 120, 1139-1140.	2.1	0
323	Neuronal Survival and Death in Alzheimer Disease. Advances in Behavioral Biology, 2002, , 49-57.	0.2	0
324	Metal Homeostasis and Its Relation to Oxidative Stress in Alzheimer's Disease. Oxidative Stress and Disease, 2003, , .	0.3	0

#	Article	IF	CITATIONS
325	Amyloid and _ in Alzheimer's Disease. Oxidative Stress and Disease, 2005, , 121-129.	0.3	0
326	Oxidative Adaptation in Aging and Alzheimer's Disease. Oxidative Stress and Disease, 2005, , 117-125.	0.3	0
327	The Potential Application of Antioxidant Agents in Alzheimer Disease Therapeutics. , 2007, , 194-211.		0
328	Lipoic Acid and Nâ€Acetyl Cysteine Protect Against Mitochondrialâ€Related Oxidative Stress in Fibroblasts from Alzheimer Disease Patients. FASEB Journal, 2007, 21, .	0.2	0
329	Oxidative Stress Associated Signal Transduction Cascades in Alzheimer Disease. Contemporary Clinical Neuroscience, 2009, , 121-136.	0.3	Ο
330	Alzheimer Disease: Oxidative Stress and Compensatory Responses. , 2009, , 109-120.		0
331	Mitochondria Dynamics Abnormalities in Alzheimer Disease. FASEB Journal, 2009, 23, 356.1.	0.2	Ο
332	Oxidative Stress and Alzheimer Disease: Mechanisms and Therapeutic Opportunities. Advances in Neurobiology, 2011, , 607-631.	1.3	0
333	RLipoic Acid as a Potent Agent of Mitochondrial Protectionin Alzheimer's Disease. Oxidative Stress and Disease, 2012, , 455-467.	0.3	0
334	Oxidative Damage is Correlated with Mitochondrial Autophagy. FASEB Journal, 2015, 29, 613.1.	0.2	0
335	Role of Oxidative Insult and Neuronal Survival in Alzheimer's and Parkinson's Diseases. , 2008, , 133-148.		0
336	Neurogenesis in Alzheimer's Disease. , 2006, , 359-370.		0