Wataru Kakegawa

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8182752/publications.pdf
Version: 2024-02-01
8

2 Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions. PLoS ONE, 2019, 14, e0216960.
2.5

1

PhotonSABER: new tool shedding light on endocytosis and learning mechanisms <i>in vivo</i>.
1.4

Communicative and Integrative Biology, 2019, 12, 34-37.
0

Interneuronal NMDA receptors regulate longâ€term depression and motor learning in the cerebellum.
2.9

Journal of Physiology, 2019, 597, 903-920.

Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning.
Neuron, 2018, 99, 985-998.e6.
$8.1 \quad 71$

6 Chemical labelling for visualizing native AMPA receptors in live neurons. Nature Communications, 2017, 8, 14850.

8 Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 2016, 353, 295-299.
Axonal Localization of Ca2+-Dependent Activator Protein for Secretion 2 Is Critical for Subcellular
11 Locality of Brain-Derived Neurotrophic Factor and Neurotrophin-3 Release Affecting Proper

Development of Postnatal Mouse Cerebellum. PLoS ONE, 2014, 9, e99524. \begin{tabular}{l}
The Î'2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA

receptor phosphorylation sites. Proceedings of the National Academy of Sciences of the United States

of America, 2013, 110, E948-57.

\quad

Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln 1
\end{tabular}

19 From The Cover: A mechanism underlying AMPA receptor trafficking during cerebellar long-term
19 potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005,

Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells. European Journal of Neuroscience, 2003, 17, 887-891.

Sindbis viral-mediated expression of Ca2+-permeable AMPA receptors at hippocampal CA1 synapses and induction of NMDA receptor-independent long-term potentiation. European Journal of Neuroscience,

