## Wataru Kakegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182752/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science, 2020, 369, .                                                                                                                                                                    | 12.6 | 78        |
| 2  | Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell<br>synaptic density but normal cerebellar motor functions. PLoS ONE, 2019, 14, e0216960.                                                                              | 2.5  | 1         |
| 3  | PhotonSABER: new tool shedding light on endocytosis and learning mechanisms <i>in vivo</i> .<br>Communicative and Integrative Biology, 2019, 12, 34-37.                                                                                                                   | 1.4  | 0         |
| 4  | Interneuronal NMDA receptors regulate longâ€ŧerm depression and motor learning in the cerebellum.<br>Journal of Physiology, 2019, 597, 903-920.                                                                                                                           | 2.9  | 31        |
| 5  | Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning.<br>Neuron, 2018, 99, 985-998.e6.                                                                                                                                        | 8.1  | 71        |
| 6  | Chemical labelling for visualizing native AMPA receptors in live neurons. Nature Communications, 2017, 8, 14850.                                                                                                                                                          | 12.8 | 75        |
| 7  | Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron, 2016, 90, 752-767.                                                                                                                                                                   | 8.1  | 150       |
| 8  | Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 2016, 353, 295-299.                                                                                                                                                      | 12.6 | 128       |
| 9  | Anterograde C1ql1 Signaling Is Required in Order to Determine and Maintain a Single-Winner Climbing<br>Fiber in the Mouse Cerebellum. Neuron, 2015, 85, 316-329.                                                                                                          | 8.1  | 161       |
| 10 | RORÂ Regulates Multiple Aspects of Dendrite Development in Cerebellar Purkinje Cells In Vivo. Journal<br>of Neuroscience, 2015, 35, 12518-12534.                                                                                                                          | 3.6  | 47        |
| 11 | Axonal Localization of Ca2+-Dependent Activator Protein for Secretion 2 Is Critical for Subcellular<br>Locality of Brain-Derived Neurotrophic Factor and Neurotrophin-3 Release Affecting Proper<br>Development of Postnatal Mouse Cerebellum. PLoS ONE, 2014, 9, e99524. | 2.5  | 15        |
| 12 | The δ2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E948-57.                                   | 7.1  | 81        |
| 13 | Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1<br>as a tool. Frontiers in Neural Circuits, 2013, 7, 180.                                                                                                          | 2.8  | 21        |
| 14 | D-Serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor. Nature<br>Neuroscience, 2011, 14, 603-611.                                                                                                                                    | 14.8 | 158       |
| 15 | Cbln1 Is a Ligand for an Orphan Glutamate Receptor δ2, a Bidirectional Synapse Organizer. Science, 2010,<br>328, 363-368.                                                                                                                                                 | 12.6 | 315       |
| 16 | Differential Regulation of Synaptic Plasticity and Cerebellar Motor Learning by the C-Terminal PDZ-Binding Motif of GluRδ2. Journal of Neuroscience, 2008, 28, 1460-1468.                                                                                                 | 3.6  | 83        |
| 17 | Ca2+permeability of the channel pore is not essential for the δ2 glutamate receptor to regulate synaptic plasticity and motor coordination. Journal of Physiology, 2007, 579, 729-735.                                                                                    | 2.9  | 38        |
| 18 | The δ2 â€~ionotropic' glutamate receptor functions as a nonâ€ionotropic receptor to control cerebellar<br>synaptic plasticity. Journal of Physiology, 2007, 584, 89-96.                                                                                                   | 2.9  | 60        |

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | From The Cover: A mechanism underlying AMPA receptor trafficking during cerebellar long-term<br>potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005,<br>102, 17846-17851. | 7.1  | 99        |
| 20 | Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje<br>cells. European Journal of Neuroscience, 2003, 17, 887-891.                                                            | 2.6  | 16        |
| 21 | Glia-Synapse Interaction Through Ca2+-Permeable AMPA Receptors in Bergmann Glia. Science, 2001, 292, 926-929.                                                                                                             | 12.6 | 384       |
| 22 | Sindbis viral-mediated expression of Ca2+-permeable AMPA receptors at hippocampal CA1 synapses and induction of NMDA receptor-independent long-term potentiation. European Journal of Neuroscience, 2001, 13, 1635-1643.  | 2.6  | 25        |