Wataru Kakegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182752/publications.pdf

Version: 2024-02-01

22 papers 2,040 citations

430874 18 h-index 713466 21 g-index

25 all docs

25 docs citations

25 times ranked

2255 citing authors

#	Article	IF	CITATIONS
1	Glia-Synapse Interaction Through Ca2+-Permeable AMPA Receptors in Bergmann Glia. Science, 2001, 292, 926-929.	12.6	384
2	Cbln1 Is a Ligand for an Orphan Glutamate Receptor Î'2, a Bidirectional Synapse Organizer. Science, 2010, 328, 363-368.	12.6	315
3	Anterograde C1ql1 Signaling Is Required in Order to Determine and Maintain a Single-Winner Climbing Fiber in the Mouse Cerebellum. Neuron, 2015, 85, 316-329.	8.1	161
4	D-Serine regulates cerebellar LTD and motor coordination through the \hat{l} 2 glutamate receptor. Nature Neuroscience, 2011, 14, 603-611.	14.8	158
5	Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins. Neuron, 2016, 90, 752-767.	8.1	150
6	Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 2016, 353, 295-299.	12.6	128
7	From The Cover: A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17846-17851.	7.1	99
8	Differential Regulation of Synaptic Plasticity and Cerebellar Motor Learning by the C-Terminal PDZ-Binding Motif of GluRÎ'2. Journal of Neuroscience, 2008, 28, 1460-1468.	3.6	83
9	The \hat{l} glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E948-57.	7.1	81
10	A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science, 2020, 369, .	12.6	78
11	Chemical labelling for visualizing native AMPA receptors in live neurons. Nature Communications, 2017, 8, 14850.	12.8	75
12	Optogenetic Control of Synaptic AMPA Receptor Endocytosis Reveals Roles of LTD in Motor Learning. Neuron, 2018, 99, 985-998.e6.	8.1	71
13	The Î'2 â€`ionotropic' glutamate receptor functions as a nonâ€ionotropic receptor to control cerebellar synaptic plasticity. Journal of Physiology, 2007, 584, 89-96.	2.9	60
14	RORÂ Regulates Multiple Aspects of Dendrite Development in Cerebellar Purkinje Cells In Vivo. Journal of Neuroscience, 2015, 35, 12518-12534.	3.6	47
15	Ca2+permeability of the channel pore is not essential for the $\hat{l}'2$ glutamate receptor to regulate synaptic plasticity and motor coordination. Journal of Physiology, 2007, 579, 729-735.	2.9	38
16	Interneuronal NMDA receptors regulate longâ€ŧerm depression and motor learning in the cerebellum. Journal of Physiology, 2019, 597, 903-920.	2.9	31
17	Sindbis viral-mediated expression of Ca2+-permeable AMPA receptors at hippocampal CA1 synapses and induction of NMDA receptor-independent long-term potentiation. European Journal of Neuroscience, 2001, 13, 1635-1643.	2.6	25
18	Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool. Frontiers in Neural Circuits, 2013, 7, 180.	2.8	21

#	Article	IF	CITATIONS
19	Functional NMDA receptor channels generated by NMDAR2B gene transfer in rat cerebellar Purkinje cells. European Journal of Neuroscience, 2003, 17, 887-891.	2.6	16
20	Axonal Localization of Ca2+-Dependent Activator Protein for Secretion 2 Is Critical for Subcellular Locality of Brain-Derived Neurotrophic Factor and Neurotrophin-3 Release Affecting Proper Development of Postnatal Mouse Cerebellum. PLoS ONE, 2014, 9, e99524.	2.5	15
21	Mice lacking EFA6C/Psd2, a guanine nucleotide exchange factor for Arf6, exhibit lower Purkinje cell synaptic density but normal cerebellar motor functions. PLoS ONE, 2019, 14, e0216960.	2.5	1
22	PhotonSABER: new tool shedding light on endocytosis and learning mechanisms <i>in vivo</i> . Communicative and Integrative Biology, 2019, 12, 34-37.	1.4	0