Piero Mazzolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182729/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of SnO/ <i>ɛ</i> -Ga ₂ O ₃ <i>p</i> – <i>n</i> diodes in planar geometry. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 042701.	0.9	6
2	Comprehensive Raman study of orthorhombic κ∫ε-Ga ₂ O ₃ and the impact of rotational domains. Journal of Materials Chemistry C, 2021, 9, 14175-14189.	2.7	7
3	Revealing the Electronic Structure and Optical Properties of CuFeO ₂ as a p-Type Oxide Semiconductor. ACS Applied Electronic Materials, 2021, 3, 1834-1841.	2.0	18
4	lsotopic study of Raman active phonon modes in β-Ga ₂ O ₃ . Journal of Materials Chemistry C, 2021, 9, 2311-2320.	2.7	20
5	Thermodynamic and Kinetic Effects on the Nucleation and Growth of ε/κ- or β-Ga ₂ O ₃ by Metal–Organic Vapor Phase Epitaxy. Crystal Growth and Design, 2021, 21, 6393-6401.	1.4	13
6	Nonâ€Equilibrium Synthesis of Highly Active Nanostructured, Oxygenâ€Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. Small, 2020, 16, e2004047.	5.2	29
7	Ga ₂ O ₃ polymorphs: tailoring the epitaxial growth conditions. Journal of Materials Chemistry C, 2020, 8, 10975-10992.	2.7	84
8	Influence of Polymorphism on the Electronic Structure of Ga ₂ O ₃ . Chemistry of Materials, 2020, 32, 8460-8470.	3.2	35
9	Offcut-related step-flow and growth rate enhancement during (100) <i>β</i> -Ga2O3 homoepitaxy by metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). Applied Physics Letters, 2020, 117, .	1.5	17
10	Efficient suboxide sources in oxide molecular beam epitaxy using mixed metal + oxide charges: The examples of SnO and Ga2O. APL Materials, 2020, 8, .	2.2	21
11	Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (2Â ⁻ 01) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). APL Materials, 2020, 8, .	2.2	80
12	Plasma-Assisted Molecular Beam Epitaxy 2. Springer Series in Materials Science, 2020, , 95-121.	0.4	4
13	SnO/ <i>β</i> -Ga2O3 vertical <i>pn</i> heterojunction diodes. Applied Physics Letters, 2020, 117, .	1.5	38
14	Towards smooth (010) β-Ga ₂ O ₃ films homoepitaxially grown by plasma assisted molecular beam epitaxy: the impact of substrate offcut and metal-to-oxygen flux ratio. Journal Physics D: Applied Physics, 2020, 53, 354003.	1.3	23
15	Plasma-assisted molecular beam epitaxy of SnO(001) films: Metastability, hole transport properties, Seebeck coefficient, and effective hole mass. Physical Review Materials, 2020, 4, .	0.9	10
16	Hierarchical TiN Nanostructured Thin Film Electrode for Highly Stable PEM Fuel Cells. ACS Applied Energy Materials, 2019, 2, 1911-1922.	2.5	14
17	Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy. APL Materials, 2019, 7, .	2.2	53
18	Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide. Electrochimica Acta, 2017, 232, 44-53.	2.6	16

PIERO MAZZOLINI

#	Article	IF	CITATIONS
19	Hydrogen-treated hierarchical titanium oxide nanostructures for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2017, 169, 19-27.	3.0	32
20	Multi-layered hierarchical nanostructures for transparent monolithic dye-sensitized solar cell architectures. Nanotechnology, 2017, 28, 245603.	1.3	8
21	Tuning the photoelectrochemical properties of hierarchical TiO2 nanostructures by control of pulsed laser deposition and annealing in reducing conditions. International Journal of Hydrogen Energy, 2017, 42, 26639-26651.	3.8	5
22	Controlling the Electrical Properties of Undoped and Taâ€Doped TiO ₂ Polycrystalline Films via Ultraâ€Fastâ€Annealing Treatments. Advanced Electronic Materials, 2016, 2, 1500316.	2.6	19
23	Vibrational–Electrical Properties Relationship in Donor-Doped TiO ₂ by Raman Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 18878-18886.	1.5	43
24	Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO ₂ Polycrystalline Films. Journal of Physical Chemistry C, 2015, 119, 6988-6997.	1.5	46
25	Tuning electrical properties of hierarchically assembled Al-doped ZnO nanoforests by room temperature Pulsed Laser Deposition. Thin Solid Films, 2015, 594, 12-17.	0.8	12
26	Morphology-driven electrical and optical properties in graded hierarchical transparent conducting Al:ZnO. Materials Research Society Symposia Proceedings, 2014, 1699, 13.	0.1	2
27	Enhancing light harvesting by hierarchical functionally graded transparent conducting Al-doped ZnO nano- and mesoarchitectures. Solar Energy Materials and Solar Cells, 2014, 128, 248-253.	3.0	14