List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182592/publications.pdf Version: 2024-02-01

Снасни Ц

#	Article	IF	CITATIONS
1	Coupling of decreased snow accumulation and increased light-absorbing particles accelerates glacier retreat in the Tibetan Plateau. Science of the Total Environment, 2022, 809, 151095.	3.9	8
2	Overestimation of anthropogenic contribution of heavy metals in precipitation than those of aerosol samples due to different treatment methods. Environmental Pollution, 2022, 300, 118956.	3.7	6
3	Black carbon and organic carbon dataset over the Third Pole. Earth System Science Data, 2022, 14, 683-707.	3.7	25
4	Organic aerosol compositions and source estimation by molecular tracers in Dushanbe, Tajikistan. Environmental Pollution, 2022, 302, 119055.	3.7	2
5	14C characteristics of organic carbon in the atmosphere and at glacier region of the Tibetan Plateau. Science of the Total Environment, 2022, 832, 155020.	3.9	4
6	An overestimation of light absorption of brown carbon in ambient particles caused by using filters with large pore size. Science of the Total Environment, 2022, 833, 155286.	3.9	1
7	Composition and sources of heavy metals in aerosol at a remote site of Southeast Tibetan Plateau, China. Science of the Total Environment, 2022, 845, 157308.	3.9	6
8	Carbonaceous matter in the atmosphere and glaciers of the Himalayas and the Tibetan plateau: An investigative review. Environment International, 2021, 146, 106281.	4.8	42
9	Light absorption and fluorescence characteristics of water-soluble organic compounds in carbonaceous particles at a typical remote site in the southeastern Himalayas and Tibetan Plateau. Environmental Pollution, 2021, 272, 116000.	3.7	19
10	Climatic, land cover, and anthropogenic controls on dissolved organic matter quantity and quality from major alpine rivers across the Himalayan-Tibetan Plateau. Science of the Total Environment, 2021, 754, 142411.	3.9	22
11	Significant Influence of Carbonates on Determining Organic Carbon and Black Carbon: A Case Study in Tajikistan, Central Asia. Environmental Science & Technology, 2021, 55, 2839-2846.	4.6	9
12	Sources and light absorption characteristics of water-soluble organic carbon (WSOC) of atmospheric particles at a remote area in inner Himalayas and Tibetan Plateau. Atmospheric Research, 2021, 253, 105472.	1.8	9
13	Photobleaching reduces the contribution of dissolved organic carbon to glacier melting in the Himalayas and the Tibetan Plateau. Science of the Total Environment, 2021, 797, 149178.	3.9	5
14	Carbonaceous matter in glacier at the headwaters of the Yangtze River: Concentration, sources and fractionation during the melting process. Journal of Environmental Sciences, 2020, 87, 389-397.	3.2	11
15	High particulate carbon deposition in Lhasa—a typical city in the Himalayan–Tibetan Plateau due to local contributions. Chemosphere, 2020, 247, 125843.	4.2	11
16	Seasonality of carbonaceous aerosol composition and light absorption properties in Karachi, Pakistan. Journal of Environmental Sciences, 2020, 90, 286-296.	3.2	20
17	Chemical components and distributions in precipitation in the Third Pole. , 2020, , 3-41.		1

18 Chemical components and distributions in glaciers of the Third Pole. , 2020, , 71-134.

5

#	Article	IF	CITATIONS
19	Black carbon in surface soil of the Himalayas and Tibetan Plateau and its contribution to total black carbon deposition at glacial region. Environmental Science and Pollution Research, 2020, 27, 2670-2676.	2.7	13
20	A new method for extraction of methanol-soluble brown carbon: Implications for investigation of its light absorption ability. Environmental Pollution, 2020, 262, 114300.	3.7	16
21	Black carbon and mineral dust on two glaciers on the central Tibetan Plateau: sources and implications. Journal of Glaciology, 2020, 66, 248-258.	1.1	13
22	Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS–BrC) in the Kathmandu Valley, Nepal: A 5-year study. Environmental Pollution, 2020, 261, 114239.	3.7	35
23	Characteristics of Dissolved Organic Matter from a Transboundary Himalayan Watershed: Relationships with Land Use, Elevation, and Hydrology. ACS Earth and Space Chemistry, 2020, 4, 449-456.	1.2	10
24	Severe air pollution and characteristics of light-absorbing particles in a typical rural area of the Indo-Gangetic Plain. Environmental Science and Pollution Research, 2020, 27, 10617-10628.	2.7	15
25	Relative contribution of mineral dust versus black carbon to Third Pole glacier melting. Atmospheric Environment, 2020, 223, 117288.	1.9	15
26	Decoupling Natural and Anthropogenic Mercury and Lead Transport from South Asia to the Himalayas. Environmental Science & Technology, 2020, 54, 5429-5436.	4.6	19
27	Deposition of Organic and Black Carbon: Direct Measurements at Three Remote Stations in the Himalayas and Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9702-9715.	1.2	29
28	Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019, 253, 49-60.	3.7	64
29	Immobilization of relic anthropogenic dissolved organic matter from alpine rivers in the Himalayan-Tibetan Plateau in winter. Water Research, 2019, 160, 97-106.	5.3	36
30	Emissions from Solid Fuel Cook Stoves in the HimalayaRegion. Energies, 2019, 12, 1089.	1.6	13
31	Historical Black Carbon Reconstruction from the Lake Sediments of the Himalayan–Tibetan Plateau. Environmental Science & Technology, 2019, 53, 5641-5651.	4.6	39
32	Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. National Science Review, 2019, 6, 796-809.	4.6	271
33	Emission Measurements from Traditional Biomass Cookstoves in South Asia and Tibet. Environmental Science & Technology, 2019, 53, 3306-3314.	4.6	47
34	Water-soluble ion components of PM10 during the winter-spring season in a typical polluted city in Northeast China. Environmental Science and Pollution Research, 2019, 26, 7055-7070.	2.7	6
35	Heavy near-surface PM2.5 pollution in Lhasa, China during a relatively static winter period. Chemosphere, 2019, 214, 314-318.	4.2	15
36	Spatial and Temporal Variations of Gaseous and Particulate Pollutants in Six Sites in Tibet, China, during 2016–2017. Aerosol and Air Quality Research, 2019, 19, 516-527.	0.9	21

#	Article	IF	CITATIONS
37	Dissolved organic carbon fractionation accelerates glacier-melting: A case study in the northern Tibetan Plateau. Science of the Total Environment, 2018, 627, 579-585.	3.9	23
38	Export of dissolved carbonaceous and nitrogenous substances in rivers of the "Water Tower of Asia― Journal of Environmental Sciences, 2018, 65, 53-61.	3.2	20
39	Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmospheric Research, 2018, 200, 77-87.	1.8	49
40	Levels and spatial distributions of levoglucosan and dissolved organic carbon in snowpits over the Tibetan Plateau glaciers. Science of the Total Environment, 2018, 612, 1340-1347.	3.9	20
41	Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China. Environmental Science and Pollution Research, 2018, 25, 3695-3707.	2.7	36
42	Importance of Local Black Carbon Emissions to the Fate of Glaciers of the Third Pole. Environmental Science & Technology, 2018, 52, 14027-14028.	4.6	22
43	Fossil Fuel Combustion Emission From South Asia Influences Precipitation Dissolved Organic Carbon Reaching the Remote Tibetan Plateau: Isotopic and Molecular Evidence. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6248-6258.	1.2	34
44	Black carbon and mineral dust in snow cover on the Tibetan Plateau. Cryosphere, 2018, 12, 413-431.	1.5	89
45	Lakes on the Tibetan Plateau as Conduits of Greenhouse Gases to the Atmosphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2091-2103.	1.3	41
46	Atmospheric sulfur isotopic anomalies recorded at Mt. Everest across the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6964-6969.	3.3	20
47	Source Apportionment and Risk Assessment of Atmospheric Polycyclic Aromatic Hydrocarbons in Lhasa, Tibet, China. Aerosol and Air Quality Research, 2018, 18, 1294-1304.	0.9	22
48	Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Science of the Total Environment, 2017, 587-588, 482-490.	3.9	91
49	Light absorption of biomass burning and vehicle emission-sourced carbonaceous aerosols of the Tibetan Plateau. Environmental Science and Pollution Research, 2017, 24, 15369-15378.	2.7	37
50	Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau. Science of the Total Environment, 2017, 607-608, 1237-1249.	3.9	38
51	Lightâ€absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6915-6933.	1.2	114
52	Deposition and light absorption characteristics of precipitation dissolved organic carbon (DOC) at three remote stations in the Himalayas and Tibetan Plateau, China. Science of the Total Environment, 2017, 605-606, 1039-1046.	3.9	41
53	Greenhouse gases emissions in rivers of the Tibetan Plateau. Scientific Reports, 2017, 7, 16573.	1.6	50
54	Re-evaluating black carbon in the Himalayas and the Tibetan Plateau: concentrations and deposition. Atmospheric Chemistry and Physics, 2017, 17, 11899-11912.	1.9	38

#	Article	IF	CITATIONS
55	Aged dissolved organic carbon exported from rivers of the Tibetan Plateau. PLoS ONE, 2017, 12, e0178166.	1.1	29
56	Characteristics of Particulate-Phase Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere over the Central Himalayas. Aerosol and Air Quality Research, 2017, 17, 2942-2954.	0.9	23
57	Atmospheric Aerosol Elements over the Inland Tibetan Plateau: Concentration, Seasonality, and Transport. Aerosol and Air Quality Research, 2016, 16, 789-800.	0.9	44
58	Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau. Cryosphere, 2016, 10, 2611-2621.	1.5	65
59	Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model. Atmospheric Research, 2016, 182, 46-53.	1.8	47
60	Carbonaceous matter deposition in the high glacial regions of the Tibetan Plateau. Atmospheric Environment, 2016, 141, 203-208.	1.9	31
61	Light absorption characteristics of carbonaceous aerosols in two remote stations of the southern fringe of the Tibetan Plateau, China. Atmospheric Environment, 2016, 143, 79-85.	1.9	62
62	Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nature Communications, 2016, 7, 12574.	5.8	265
63	Concentration, sources, and flux of dissolved organic carbon of precipitation at Lhasa city, the Tibetan Plateau. Environmental Science and Pollution Research, 2016, 23, 12915-12921.	2.7	28
64	Atmospheric Mercury Depositional Chronology Reconstructed from Lake Sediments and Ice Core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 2016, 50, 2859-2869.	4.6	130
65	Concentrations and light absorption characteristics of carbonaceous aerosol in PM 2.5 and PM 10 of Lhasa city, the Tibetan Plateau. Atmospheric Environment, 2016, 127, 340-346.	1.9	91
66	Yak dung combustion aerosols in the Tibetan Plateau: Chemical characteristics and influence on the local atmospheric environment. Atmospheric Research, 2015, 156, 58-66.	1.8	64
67	Indoor air pollution from burning yak dung as a household fuel in Tibet. Atmospheric Environment, 2015, 102, 406-412.	1.9	77
68	River water quality across the Himalayan regions: elemental concentrations in headwaters of Yarlung Tsangbo, Indus and Ganges River. Environmental Earth Sciences, 2015, 73, 4151-4163.	1.3	48
69	Characteristics and sources of polycyclic aromatic hydrocarbons in atmospheric aerosols in the Kathmandu Valley, Nepal. Science of the Total Environment, 2015, 538, 86-92.	3.9	85
70	Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environmental Earth Sciences, 2014, 71, 4143-4148.	1.3	45
71	Wet deposition of precipitation chemistry during 2005–2009 at a remote site (Nam Co Station) in central Tibetan Plateau. Journal of Atmospheric Chemistry, 2012, 69, 187-200.	1.4	35
72	Effectiveness of rare earth elements constrain on different materials: a case study in central Asia. Environmental Earth Sciences, 2012, 67, 1415-1421.	1.3	3

#	Article	IF	CITATIONS
73	Mercury Distribution and Deposition in Glacier Snow over Western China. Environmental Science & Technology, 2012, 46, 5404-5413.	4.6	93
74	Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China. Environmental Science and Pollution Research, 2012, 19, 1620-1628.	2.7	32
75	Personal PM2.5 and indoor CO in nomadic tents using open and chimney biomass stoves on the Tibetan Plateau. Atmospheric Environment, 2012, 59, 207-213.	1.9	35
76	Geochemical evidence on the source regions of Tibetan Plateau dusts during non-monsoon period in 2008/09. Atmospheric Environment, 2012, 59, 382-388.	1.9	18
77	Heavy metals in sediments of the Yarlung Tsangbo and its connection with the arsenic problem in the Ganges–Brahmaputra Basin. Environmental Geochemistry and Health, 2011, 33, 23-32.	1.8	35
78	Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environmental Monitoring and Assessment, 2011, 177, 301-313.	1.3	15
79	Mercury speciation and spatial distribution in surface waters of the Yarlung Zangbo River, Tibet. Science Bulletin, 2010, 55, 2697-2703.	1.7	31
80	Total suspended particulate matter and toxic elements indoors during cooking with yak dung. Atmospheric Environment, 2009, 43, 4243-4246.	1.9	35
81	Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environmental Pollution, 2009, 157, 2261-2265.	3.7	114
82	Rare earth elements in the surface sediments of the Yarlung Tsangbo (Upper Brahmaputra River) sediments, southern Tibetan Plateau. Quaternary International, 2009, 208, 151-157.	0.7	39
83	Rare earth elements in an ice core from Mt. Everest: Seasonal variations and potential sources. Atmospheric Research, 2009, 94, 300-312.	1.8	34
84	Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin, Tibetan Plateau. Environmental Geology, 2008, 53, 1433-1440.	1.2	58
85	Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau. Aquatic Geochemistry, 2008, 14, 321-336.	1.5	43
86	Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau. Atmospheric Research, 2007, 85, 351-360.	1.8	144
87	Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season. Science Bulletin, 2007, 52, 3436-3442.	1.7	29
88	Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. Journal of Chinese Geography, 2006, 16, 337-345.	1.5	16