

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182404/publications.pdf

Version: 2024-02-01

WELLI

#	Article	IF	CITATIONS
1	Rollâ€ŧoâ€Roll Dry Transfer of Largeâ€Scale Graphene. Advanced Materials, 2022, 34, e2106615.	11.1	32
2	An Adaptive Machine Learning Method Based on Finite Element Analysis for Ultra Low-k Chip Package Design. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 1435-1441.	1.4	32
3	A rewritable optical storage medium of silk proteins using near-field nano-optics. Nature Nanotechnology, 2020, 15, 941-947.	15.6	51
4	Determination of Tissue Thermal Conductivity as a Function of Thermal Dose and Its Application in Finite Element Modeling of Electrosurgical Vessel Sealing. IEEE Transactions on Biomedical Engineering, 2020, 67, 2862-2869.	2.5	4
5	Performance of different layers of graphene as protective coating for copper wire. Materials Letters, 2020, 273, 127875.	1.3	7
6	A high-throughput three-dimensional cell culture platform for drug screening. Bio-Design and Manufacturing, 2020, 3, 40-47.	3.9	11
7	Dynamic Impedance Monitoring for Large Diameter Vessel Sealing Using Bipolar Electrosurgery. Journal of Medical Devices, Transactions of the ASME, 2020, 14, .	0.4	1
8	Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. International Journal of Biological Macromolecules, 2019, 134, 469-479.	3.6	45
9	Characterization of the Electrosurgical Tissue Joining Process Using Dynamic Impedance and Energy Efficiency. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	3
10	Ultrasensitive LPFG corrosion sensor with Fe-C coating electroplated on a Gr/AgNW film. Sensors and Actuators B: Chemical, 2019, 283, 334-342.	4.0	29
11	Dynamic Impedance Monitoring of Large Diameter-Vessel Sealing in Bipolar Electrosurgeries. , 2019, , .		0
12	A New Concept of Electrosurgical Tissue Joining Process Using Sequential Compression for Minimal Thermal Damage. , 2019, , .		2
13	An Experimental Study on Bipolar Tissue Hemostasis and Its Dynamic Impedance. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	4
14	Characterization and Modeling of Tissue Thermal Conductivity During an Electrosurgical Joining Process. IEEE Transactions on Biomedical Engineering, 2018, 65, 365-370.	2.5	13
15	Effects of Compression Force and Heating Power on Bipolar Tissue Welding. , 2018, , .		Ο
16	An AC electrothermal self-circulating system with a minimalist process to construct a biomimetic liver lobule model for drug testing. RSC Advances, 2018, 8, 36987-36998.	1.7	3
17	Experimental Study on the Electrosurgical Tissue Joining Process With Process Parameter Monitoring for Quality Control. , 2018, , .		1
18	A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018, 5, 031105.	5.5	40

#	Article	IF	CITATIONS
19	Roll-to-Roll Mechanical Peeling for Dry Transfer of Chemical Vapor Deposition Graphene. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	26
20	Flow Analysis of a Porous Polymer-Based Three-Dimensional Cell Culture Device for Drug Screening. , 2018, , .		0
21	Modeling of an Electropolishing-Assisted Electroless Deposition Process for Microcellular Metal Foam Fabrication. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	2
22	The Effect of Compression Force Uniformity on Bipolar Tissue Welding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	3
23	Drowsiness Detection With Electrooculography Signal Using a System Dynamics Approach. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2017, 139, .	0.9	10
24	Fabrication of Foamed Polyethersulfone–Zeolite Mixed Matrix Membranes for Polymer Electrolyte Membrane Fuel Cell Humidification. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	4
25	Measurement of Tissue Thermal Conductivity With Variable Thermal Dose During an Electrosurgical Joining Process. , 2017, , .		0
26	Modeling and Simulation of a Selective Laser Foaming Process for Fabrication of Microliter Tissue Engineering Scaffolds. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	4
27	Adhesion energy of as-grown graphene on copper foil with a blister test. Carbon, 2017, 123, 243-249.	5.4	41
28	Automatic detection of layout of color yarns of yarnâ€dyed fabric. Part 3: Doubleâ€systemâ€Mélange color fabrics. Color Research and Application, 2017, 42, 250-260.	0.8	6
29	Dynamic Electrical Impedance in Bipolar Tissue Welding. , 2017, , .		0
30	Non-uniform control volume sizing methodology for relative humidity control of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 23170-23179.	3.8	5
31	Image analysis for seam-puckering evaluation. Textile Reseach Journal, 2017, 87, 2513-2523.	1.1	4
32	Characterization of Tissue Thermal Conductivity During a Tissue Joining Process. , 2016, , .		0
33	Measurement and Modeling of Tissue Thermal Conductivity With Variable Water Content and Compression. Journal of Heat Transfer, 2016, 138, .	1.2	10
34	Wearable Sleepiness Detection Based on Characterization of Physiological Dynamics. , 2016, , .		0
35	Automatic detection of layout of color yarns of yarnâ€dyed fabric. Part 2: Region segmentation of doubleâ€systemâ€Mélange color fabric. Color Research and Application, 2016, 41, 626-635.	0.8	12
36	Development and Experimental Validation of a Physics-Based PEM Fuel Cell Model for Cathode Humidity Control Design. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1775-1782.	3.7	21

#	Article	IF	CITATIONS
37	Microcellular 3D graphene foam via chemical vapor deposition of electroless plated nickel foam templates. Materials Letters, 2016, 162, 105-109.	1.3	29
38	An Experimental Study on the Effect of Compression Force Uniformity in Electrosurgical Tissue Welding. , 2016, , .		2
39	Applying Image Analysis for Automatic Density Measurement of High-tightness Woven Fabrics. Fibres and Textiles in Eastern Europe, 2016, 24, 66-72.	0.2	15
40	3D Printing and Nanomanufacturing. , 2015, , 25-55.		5
41	Parametric Analysis of Factors That Affect Asphalt Binder Foaming Characteristics. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	14
42	Selective Laser Foaming for Three-Dimensional Cell Culture on a Compact Disc. , 2015, , .		2
43	Fabrication of Small Pore-Size Nickel Foams Using Electroless Plating of Solid-State Foamed Immiscible Polymer Blends. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	17
44	A Fatigue Life Study of Ultrasonically Welded Lithium-Ion Battery Tab Joints Based on Electrical Resistance. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	21
45	Characteristics of Asphalt Binders Foamed in the Laboratory to Produce Warm Mix Asphalt. Journal of Materials in Civil Engineering, 2014, 26, .	1.3	27
46	Polyetherimide nanocomposite foams as an ablative for thermal protection applications. Composites Part B: Engineering, 2014, 58, 559-565.	5.9	23
47	Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer. Biofabrication, 2014, 6, 024110.	3.7	18
48	Fabrication of microcellular metal foams with sphere template electrodeposition. Manufacturing Letters, 2014, 2, 118-121.	1.1	6
49	Solvent-Free Fabrication of Tissue Engineering Scaffolds With Immiscible Polymer Blends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 510-517.	1.8	19
50	The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams. Applied Thermal Engineering, 2014, 64, 147-154.	3.0	176
51	On thermal conductivity of micro―and nanocellular polymer foams. Polymer Engineering and Science, 2013, 53, 1901-1909.	1.5	47
52	Multifunctional polyetherimide nanocomposite foam. Journal of Cellular Plastics, 2013, 49, 131-145.	1.2	18
53	Fabrication of Three-Dimensional Tissue Scaffold Arrays Using Laser Foaming. , 2013, , .		1
54	Design and Construction of a Membrane Analysis System for Fuel Cell Humidification Applications. , 2013, , .		0

#	Article	IF	CITATIONS
55	Fabrication and characterization of polyetherimide nanofoams using supercritical CO ₂ . Journal of Cellular Plastics, 2012, 48, 239-255.	1.2	38
56	Carbon Nanotube Modified Electrically Conductive Cellulose Film. , 2012, , .		0
57	Development of Crystallization in PLA during Solid-State Foaming Process using Sub-Critical CO ₂ . Frontiers in Forests and Global Change, 2012, 31, 1-18.	0.6	18
58	Fabrication and Thermal Conductivity Characterization of Polyetherimide Nanofoam. , 2012, , .		0
59	Towards personalized medicine with a three-dimensional micro-scale perfusion-based two-chamber tissue model system. Biomaterials, 2012, 33, 4353-4361.	5.7	75
60	Fabrication of functionally graded porous polymer via supercritical CO2 foaming. Composites Part B: Engineering, 2011, 42, 318-325.	5.9	98
61	Fabrication of tissue engineering scaffolds through solid-state foaming of immiscible polymer blends. Biofabrication, 2011, 3, 045003.	3.7	25
62	A Perfused Two-Chamber System for Anticancer Drug Screening. , 2010, , .		0
63	A porous 3D cell culture micro device for cell migration study. Biomedical Microdevices, 2010, 12, 753-760.	1.4	29
64	Creating Open-celled Solid-state Foams Using Ultrasound. Journal of Cellular Plastics, 2009, 45, 353-369.	1.2	21
65	An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. Journal of Power Sources, 2008, 180, 461-467.	4.0	100
66	Selective Ultrasonic Foaming of Polymer for Biomedical Applications. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008, 130, .	1.3	16
67	Fabrication of a Novel 3D Porous Micromixer Using Selective Ultrasonic Foaming. , 2007, , 1005.		0
68	A Novel Passive Polymeric Micromixer Using 3D Porous Structure. , 2007, , 117.		0
69	The Nonlinear Time-Varying Response of Dynamic Thermal Tensioning for Welding-Induced Distortion Control. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2007, 129, 333-341.	1.3	7
70	A permeability measurement system for tissue engineering scaffolds. Measurement Science and Technology, 2007, 18, 208-216.	1.4	53
71	A novel 3D porous micromixer fabricated using selective ultrasonic foaming. Journal of Micromechanics and Microengineering, 2007, 17, 1835-1842.	1.5	11

A Study of PLA Crystallization During Solid-State Foaming. , 2007, , 53.

0

#	Article	IF	CITATIONS
73	A Parametric Study on Selective Ultrasonic Foaming of Porous Polymer for Biomedical Applications. , 2007, , 681.		0
74	Low Density Sub-Critical CO ₂ -Blown Solid-State PLA Foams. Frontiers in Forests and Global Change, 2007, 26, 11-35.	0.6	28
75	Preliminary Study on Solid-State Foaming of PMMA/CNT Nanocomposites. , 2007, , .		0
76	Manufacturing process diagnosis using functional regression. Journal of Materials Processing Technology, 2007, 186, 323-330.	3.1	12
77	A Concentration-Dependent Diffusion Model for Selective Ultrasonic Foaming. , 2007, , .		0
78	A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications. Biomaterials, 2006, 27, 1924-1929.	5.7	138
79	Force characteristics of self-piercing riveting. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220, 1259-1266.	1.5	10
80	A hybrid methodology for enhancing reliability of large systems in conceptual design and its application to the design of a multiphase flow station. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2005, 16, 27-41.	1.2	17
81	Constrained Solid-State Foaming of Microcellular Panels. Frontiers in Forests and Global Change, 2005, 24, 71-90.	0.6	16
82	A Comparative Study of Single-Phase AC and Multiphase DC Resistance Spot Welding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127, 583-589.	1.3	50
83	Modeling and On-Line Estimation of Electrode Wear in Resistance Spot Welding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2005, 127, 709-717.	1.3	21
84	Experimental Characterization of MFDC/CHC Resistance Spot Welding. , 2005, , .		0
85	Diagnosis of tapping process using spindle motor current. International Journal of Machine Tools and Manufacture, 2003, 43, 73-79.	6.2	36
86	Statistical Investigation on Resistance Spot Welding Quality Using a Two-State, Sliding-Level Experiment. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2001, 123, 513-520.	1.3	33
87	On-line Quality Estimation in Resistance Spot Welding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2000, 122, 511-512.	1.3	34