
Daniel J Gapes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8182385/publications.pdf

Version: 2024-02-01

DANIEL I CADES

#	Article	IF	CITATIONS
1	Hydrothermal conversion of toilet waste: effect of processing conditions on gas phase emissions. Heliyon, 2022, 8, e09708.	1.4	0
2	An improved model for the kinetics of non-oxidative hydrothermal process. Journal of Environmental Management, 2020, 253, 109704.	3.8	6
3	A mass transfer study of the wet oxidation of cellulose. Chemical Engineering Journal, 2020, 384, 123326.	6.6	2
4	Rheological Behavior of High Cell Density Pseudomonas putida LS46 Cultures during Production of Medium Chain Length Polyhydroxyalkanoate (PHA) Polymers. Bioengineering, 2019, 6, 93.	1.6	7
5	Hydrogen Oxidation Influences Clycogen Accumulation in a Verrucomicrobial Methanotroph. Frontiers in Microbiology, 2019, 10, 1873.	1.5	15
6	Development of High Cell Density Cultivation Strategies for Improved Medium Chain Length Polyhydroxyalkanoate Productivity Using Pseudomonas putida LS46. Bioengineering, 2019, 6, 89.	1.6	16
7	Efficacy of medium chain-length polyhydroxyalkanoate biosynthesis from different biochemical pathways under oxygen-limited conditions using Pseudomonas putida LS46. Process Biochemistry, 2019, 82, 19-31.	1.8	10
8	Polyhydroxyalkanoate (PHA) Bioplastics from Organic Waste. , 2019, , 615-638.		12
9	Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water Research, 2018, 140, 1-11.	5.3	47
10	Carbon flux to growth or polyhydroxyalkanoate synthesis under microaerophilic conditions is affected by fatty acid chain-length in Pseudomonas putida LS46. Applied Microbiology and Biotechnology, 2018, 102, 6437-6449.	1.7	16
11	The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis. World Journal of Microbiology and Biotechnology, 2018, 34, 106.	1.7	30
12	Effect of hydrodynamic mixing conditions on wet oxidation reactions in a stirred vessel reactor. Bioresource Technology, 2018, 262, 333-337.	4.8	3
13	Rheological measurements as a tool for monitoring the performance of high pressure and high temperature treatment of sewage sludge. Water Research, 2017, 114, 254-263.	5.3	21
14	Microaerophilic environments improve the productivity of medium chain length polyhydroxyalkanoate biosynthesis from fatty acids in Pseudomonas putida LS46. Process Biochemistry, 2017, 59, 18-25.	1.8	14
15	Pretreatment of radiata pine using two white rot fungal strains Stereum hirsutum and Trametes versicolor. Energy Conversion and Management, 2017, 142, 13-19.	4.4	55
16	Hydrothermal processing of cellulose: A comparison between oxidative and non-oxidative processes. Bioresource Technology, 2017, 226, 229-237.	4.8	32
17	Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME Journal, 2017, 11, 2599-2610.	4.4	107
18	Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review. Water Research, 2017, 123, 607-622.	5.3	57

DANIEL J GAPES

#	Article	IF	CITATIONS
19	Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge. Bioresource Technology, 2016, 205, 280-285.	4.8	45
20	Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review. Renewable and Sustainable Energy Reviews, 2016, 54, 217-234.	8.2	255
21	Development of Pinus radiata suspension cultures from xylogenic callus. New Zealand Journal of Forestry Science, 2015, 45, .	0.8	0
22	A kinetic model of municipal sludge degradation during non-catalytic wet oxidation. Water Research, 2015, 87, 225-236.	5.3	27
23	Acetic acid recovery from a hybrid biological–hydrothermal treatment process of sewage sludge – a pilot plant study. Water Science and Technology, 2015, 71, 734-739.	1.2	14
24	Hydrothermal degradation of organic matter in municipal sludge using non-catalytic wet oxidation. Chemical Engineering Journal, 2015, 260, 846-854.	6.6	66
25	A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment. Bioresource Technology, 2014, 155, 289-299.	4.8	213
26	Application of hydrothermal treatment to affect the fermentability of Pinus radiata pulp mill effluent sludge. Bioresource Technology, 2014, 170, 100-107.	4.8	6
27	Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresource Technology, 2013, 140, 227-233.	4.8	111
28	Relative influence of process variables during non-catalytic wet oxidation of municipal sludge. Bioresource Technology, 2013, 148, 605-610.	4.8	31
29	Transformation and removal of wood extractives from pulp mill sludge using wet oxidation and thermal hydrolysis. Bioresource Technology, 2013, 146, 294-300.	4.8	37
30	Evaluation of a two-stage hydrothermal process for enhancing acetic acid production using municipal biosolids. Water Science and Technology, 2012, 65, 149-155.	1.2	22
31	Thermal and thermo-chemical pre-treatment of four waste residues and the effect on acetic acid production and methane synthesis. Waste Management, 2012, 32, 1669-1677.	3.7	30
32	Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge. Bioresource Technology, 2011, 102, 5533-5540.	4.8	55
33	Combined thermochemical and fermentative destruction of municipal biosolids: A comparison between thermal hydrolysis and wet oxidative pre-treatment. Bioresource Technology, 2011, 102, 5520-5527.	4.8	61
34	Influence of nitrogen limitation on performance of a microbial fuel cell. Water Science and Technology, 2011, 63, 1752-1757.	1.2	9
35	Impact of oxygen mass transfer on nitrification reactions in suspended carrier reactor biofilms. Process Biochemistry, 2009, 44, 43-53.	1.8	40
36	Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Applied Microbiology and Biotechnology, 2009, 82, 545-555.	1.7	49

DANIEL J GAPES

#	Article	IF	CITATIONS
37	Performance of a fungal based SBR under pH extreme and shock phenolic exposure. Water Science and Technology, 2008, 58, 925-930.	1.2	1
38	Development and examination of a granular nitrogen-fixing wastewater treatment system. Process Biochemistry, 2007, 42, 863-872.	1.8	9
39	Determination of external and internal mass transfer limitation in nitrifying microbial aggregates. Biotechnology and Bioengineering, 2004, 86, 445-457.	1.7	27
40	Development of a novel titration and off-gas analysis (TOGA) sensor for study of biological processes in wastewater treatment systems. Biotechnology and Bioengineering, 2003, 81, 482-495.	1.7	84
41	Online titrimetric and off-gas analysis for examining nitrification processes in wastewater treatment. Water Research, 2003, 37, 2678-2690.	5.3	23
42	Analysis of biological wastewater treatment processes using multicomponent gas phase mass balancing. Biotechnology and Bioengineering, 2001, 76, 361-375.	1.7	29