Christian Waldschmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181833/publications.pdf

Version: 2024-02-01

234 papers

4,105 citations

279487 23 h-index 52 g-index

234 all docs 234 docs citations

times ranked

234

2245 citing authors

#	Article	lF	CITATIONS
1	UAV-Borne 2-D and 3-D Radar-Based Grid Mapping. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	9
2	UAV-Borne FMCW InSAR for Focusing Buried Objects. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	19
3	Dual-port traveling-wave frequency-scanned patch array antenna for E-band vehicle sensing and imaging applications. IEICE Electronics Express, 2022, 19, 20210367-20210367.	0.3	O
4	Glass Package for Radar MMICs Above 150 GHz. IEEE Journal of Microwaves, 2022, 2, 97-107.	4.9	8
5	Radar-Based Mapping of the Environment: Occupancy Grid-Map Versus SAR. IEEE Microwave and Wireless Components Letters, 2022, 32, 253-256.	2.0	13
6	River Surface Analysis and Characterization Using FMCW Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2493-2502.	2.3	8
7	Coherent Measurements of a Multistatic MIMO Radar Network With Phase Noise Optimized Non-Coherent Signal Synthesis. IEEE Journal of Microwaves, 2022, 2, 239-252.	4.9	3
8	A novel covariance model for MIMO sensing systems and its identification from measurements. Signal Processing, 2022, 197, 108542.	2.1	0
9	Near-Field Compensation for Coherent Radar Networks. IEEE Microwave and Wireless Components Letters, 2022, 32, 1251-1254.	2.0	2
10	Towards Holographic Antenna Systems for MIMO Radar and Communication Applications. , 2022, , .		4
11	PointNet+LSTM for Target List-Based Gesture Recognition With Incoherent Radar Networks. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58, 5675-5686.	2.6	9
12	Efficient Calibration of Very Large mm-Wave Radars by Virtual Phase Center Analysis. , 2022, , .		2
13	IQ-Transmitter Digital Predistortion for an OFDM Radar. , 2022, , .		4
14	Holographic Conical Beam Scanning Antenna for mm-Wave Radars Using Glass Technology. , 2022, , .		3
15	Radar-Based Classification of Automotive-Related Scenarios using Temporal Information. , 2022, , .		1
16	A Broadband Multilayer Vertical Transition at 79 GHz Employing FR4 as Core Material., 2022,,.		2
17	Data Augmentation in Time and Doppler Frequency Domain for Radar-based Gesture Recognition. , 2022,		2
18	Ghost-Target Suppression in Coherent Radar Networks. , 2022, , .		0

#	Article	IF	CITATIONS
19	Matching Bistatic Target Responses in Radar Networks to Enable Vectorial Velocity Estimation. , 2022, , .		O
20	Characterization Techniques for Reconfigurable Reflectarray Unit Cells at 240 GHz. IEEE Antennas and Wireless Propagation Letters, 2022, 21, 1911-1915.	2.4	4
21	Under the Sand: Navigation and Localization of a Micro Aerial Vehicle for Landmine Detection with Ground-Penetrating Synthetic Aperture Radar., 2022, 2, 1028-1067.		2
22	Range-Angle Coupling and Near-Field Effects of Very Large Arrays in mm-Wave Imaging Radars. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 262-270.	2.9	17
23	OFDM-Based Radar Network Providing Phase Coherent DOA Estimation. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 325-336.	2.9	21
24	Automotive Radar â€" From First Efforts to Future Systems. IEEE Journal of Microwaves, 2021, 1, 135-148.	4.9	236
25	Mutual Interference of Automotive OFDM Radars—Analysis and Countermeasures. IEEE Journal of Microwaves, 2021, 1, 950-961.	4.9	6
26	Performance Evaluation and Optimization of MIMO Radars Using Biomimetic Antenna Arrays. IEEE Transactions on Microwave Theory and Techniques, 2021, , 1-1.	2.9	4
27	A Switchable Biomimetic Antenna Array. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 2422-2426.	2.4	1
28	Multi-Modal Cross Learning for an FMCW Radar Assisted by Thermal and RGB Cameras to Monitor Gestures and Cooking Processes. IEEE Access, 2021, 9, 22295-22303.	2.6	8
29	Experimental Study on the Detection of Avalanche Victims using an Airborne Ground Penetrating Synthetic Aperture Radar., 2021, , .		4
30	Multiplexing of OFDM-Based Radar Networks. , 2021, , .		3
31	Synthetization of Virtual Transmit Antennas for MIMO OFDM Radar by Space-Time Coding. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57, 1964-1971.	2.6	4
32	Calibration Technique for THz Time-Domain Spectrometers Enabling Vectorial Scattering Parameter Measurements. IEEE Microwave and Wireless Components Letters, 2021, 31, 805-807.	2.0	7
33	N-Element Biomimetic Antenna Arrays. IEEE Transactions on Antennas and Propagation, 2021, 69, 3899-3912.	3.1	5
34	The Fairy Tale of Simple All-Digital Radars: How to Deal With 100 Gbit/s of a Digital Millimeter-Wave MIMO Radar on an FPGA [Application Notes]. IEEE Microwave Magazine, 2021, 22, 66-76.	0.7	24
35	Multitarget Simulator for Automotive Radar Sensors With Unknown Chirp-Sequence Modulation. IEEE Microwave and Wireless Components Letters, 2021, 31, 1086-1089.	2.0	11
36	Coded OFDM Waveforms for MIMO Radars. IEEE Transactions on Vehicular Technology, 2021, 70, 8769-8780.	3.9	13

#	Article	IF	CITATIONS
37	Phase-Code-Based Modulation for Coherent Lidar. IEEE Transactions on Vehicular Technology, 2021, 70, 9886-9897.	3.9	9
38	Flexible Direction-of-Arrival Simulation for Automotive Radar Target Simulators. IEEE Journal of Microwaves, 2021, 1, 930-940.	4.9	12
39	System Performance of a Scalable 79 GHz Imaging MIMO Radar With Injection-Locked LO Feedthrough. IEEE Journal of Microwaves, 2021, 1, 941-949.	4.9	7
40	Highly Efficient Angular Array Calibration Based on the Modal Wave Expansion Technique. IEEE Open Journal of Antennas and Propagation, 2021, 2, 938-948.	2.5	5
41	Versatile Hermetically Sealed Sensor Platform for High Frequency Applications. , 2021, , .		1
42	Phase-Coded FMCW Lidar., 2021,,.		1
43	FMCW-Interference of Frequency Agile OFDM Radars. , 2021, , .		3
44	Channel Influence for the Analysis of Interferences Between Automotive Radars. , 2021, , .		8
45	A Cognitive FMCW Radar to Minimize a Sequence of Range-Doppler Measurements. , 2021, , .		0
46	Increasing the Efficiency and Robustness of Angular Radar Calibration by Exploiting Phase Symmetry. , 2021, , .		4
47	Radar Imaging Using Electrically Large Arrays With High Range Resolution at 160 GHz. , 2021, , .		0
48	Airborne Tripwire Detection Using a Synthetic Aperture Radar. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 262-266.	1.4	13
49	A Wideband Differential Microstrip-to-Waveguide Transition for Multilayer PCBs at 120 GHz. IEEE Microwave and Wireless Components Letters, 2020, 30, 170-172.	2.0	7
50	Mitigation of RF Impairments of a 160-GHz MMIC FMCW Radar Using Model-Based Estimation. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 1065-1073.	2.9	1
51	IQ-Imbalance Compensation for Wideband OFDM-Radar., 2020,,.		3
52	Ultracompact Monostatic MIMO Radar With Nonredundant Aperture. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4805-4813.	2.9	9
53	A Wideband 122GHz Cavity-Backed Dipole Antenna for Millimeter-Wave Radar Altimetry., 2020,,.		2
54	A Multimodal Dielectric Waveguide-Based Monopulse Radar at 160 GHz. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4825-4834.	2.9	7

#	Article	IF	Citations
55	A System Analysis of Noise Influences on the Imaging Performance of Millimeter Wave MIMO Radars. , 2020, , .		3
56	Phase Recovery in Sensor Networks Based on Incoherent Repeater Elements. , 2020, , .		3
57	Robust Doppler-Based Gesture Recognition With Incoherent Automotive Radar Sensor Networks. , 2020, 4, 1-4.		19
58	Advanced Noncoherent Detection in Massive MIMO Systems via Digital Beamspace Preprocessing. Telecom, 2020, 1, 211-227.	1.6	2
59	A Radar System Concept for 2D Unambiguous Angle Estimation Using Widely Spaced MMICs with Antennas On-Chip at 150 GHz., 2020, , .		2
60	Mechanically Decoupled Transitions from MMIC to Rectangular and Dielectric Waveguides at G-Band. , 2020, , .		1
61	Flexible Radar Front End with Multimodal Transition at 300 GHz., 2020,,.		2
62	Mitigation of Leakage in FMCW Radars by Background Subtraction and Whitening. IEEE Microwave and Wireless Components Letters, 2020, 30, 1105-1107.	2.0	4
63	Calibration and Direction-of-Arrival Estimation of Millimeter-Wave Radars: A Practical Introduction. IEEE Antennas and Propagation Magazine, 2020, 62, 34-45.	1.2	47
64	Millimeter-Wave SAR-Imaging With Radar Networks Based on Radar Self-Localization. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 4652-4661.	2.9	23
65	Interference-Robust Processing of OFDM Radar Signals Using Compressed Sensing. , 2020, 4, 1-4.		9
66	2-D MIMO Radar: A Method for Array Performance Assessment and Design of a Planar Antenna Array. IEEE Transactions on Antennas and Propagation, 2020, 68, 4604-4616.	3.1	29
67	Coherent Measurements With MIMO Radar Networks of Incoherent FMCW Sensor Nodes. IEEE Microwave and Wireless Components Letters, 2020, 30, 721-724.	2.0	8
68	Self-Aligning and Flexible Dielectric Waveguide Plug for MMICs at <i>G</i> -Band. IEEE Microwave and Wireless Components Letters, 2020, 30, 261-264.	2.0	5
69	Calibration-Based Phase Coherence of Incoherent and Quasi-Coherent 160-GHz MIMO Radars. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2768-2778.	2.9	16
70	Simulator Design for Interference Analysis in Complex Automotive Multi-User Traffic Scenarios. , 2020, , .		5
71	Tripwire Detection in SAR Images Using a Modified Radon Transform. , 2020, , .		1
72	High-Gain Millimeter-Wave Holographic Antenna in Package Using Glass Technology. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 2067-2071.	2.4	13

#	Article	IF	Citations
73	A 160-GHz radar sniffer probe for honey bee detection. , 2020, , .		O
74	Corrections to "Assessment of a Millimeter-Wave Antenna System for MIMO Radar Applications― IEEE Antennas and Wireless Propagation Letters, 2020, 19, 720-720.	2.4	O
75	Human Gesture Classification for Autonomous Driving Applications using Radars. , 2020, , .		3
76	Radar Sensors for Autonomous Driving: Modulation Schemes and Interference Mitigation. IEEE Microwave Magazine, 2019, 20, 58-72.	0.7	107
77	A Doppler-Tolerant Stepped-Carrier OFDM-Radar Scheme Based on All-Cell-Doppler-Correction. , 2019, ,		4
78	Position Acquisition for a Multicopter-Based Synthetic Aperture Radar., 2019,,.		1
79	Coherent Multistatic MIMO Radar Networks Based on Repeater Tags. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 3908-3916.	2.9	13
80	Advanced Radar Micro-Doppler Simulation Environment for Human Motion Applications., 2019,,.		7
81	Impact of an Automotive Chirp-Sequence Interferer on a Wideband Pseudo-Noise Radar., 2019,,.		1
82	Characterization of mm-Wave Conformal Antenna Arrays for a \$3imes 8\$ MIMO Radar., 2019,,.		4
83	Effort Considerations of Compressed Sensing for Automotive Radar. , 2019, , .		5
84	Enhancing Angle Estimation Accuracy of Ultra Compact Two-Channel Radar MMICs at $160~\mathrm{GHz}$ Using a Biomimetic Antenna Array. , $2019, \ldots$		2
85	Leakage Phase Noise Mitigation for Monostatic FMCW Radar Sensors Using Carrier Transmission. , 2019, , .		3
86	Association of Straight Radar Landmarks for Vehicle Self-Localization. , 2019, , .		4
87	A Wideband Dielectric Waveguide-Based 160-GHz Radar Target Generator. Sensors, 2019, 19, 2801.	2.1	1
88	Aperture coupled stacked patch thin film antenna for automotive radar at 77 GHz. International Journal of Microwave and Wireless Technologies, 2019, 11, 1061-1068.	1.5	4
89	High-Resolution 160-GHz Imaging MIMO Radar Using MMICs With On-Chip Frequency Synthesizers. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 3897-3907.	2.9	41
90	An Integrated Stepped-Carrier OFDM MIMO Radar Utilizing a Novel Fast Frequency Step Generator for Automotive Applications. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 4559-4569.	2.9	21

#	Article	IF	Citations
91	A Radar Measurement Setup with a Ground Truth System for Micro-Doppler Human Movements. , 2019, , .		2
92	Chirp-Sequence-Based Imaging Using a Network of Distributed Single-Channel Radar Sensors. , 2019, , .		9
93	Clustering of Closely Adjacent Extended Objects in Radar Images using Velocity Profile Analysis. , 2019,		7
94	A broadband UAV-Based FMCW GPR and the Influence of Vegetation. , 2019, , .		4
95	Cooperative Target Detection in a Network of Single-Channel Radar Sensors. , 2019, , .		4
96	Optically Transparent Patch Antennas at 77 GHz Using Meshed Aluminum. , 2019, , .		0
97	Compressed Sensing based Single Snapshot DoA Estimation for Sparse MIMO Radar Arrays. , 2019, , .		25
98	Random Multiplexing for an MIMO-OFDM Radar With Compressed Sensing-Based Reconstruction. IEEE Microwave and Wireless Components Letters, 2019, 29, 300-302.	2.0	34
99	A Noncoherent Massive MIMO System Employing Beamspace Techniques. IEEE Transactions on Vehicular Technology, 2019, 68, 11052-11063.	3.9	3
100	Uav-Based Polarimetric Synthetic Aperture Radar for Mine Detection. , 2019, , .		9
101	On the Calibration of mm-Wave MIMO Radars Using Sparse Antenna Arrays for DoA Estimation. , 2019, , .		16
102	Planar Highly Efficient High-Gain 165ÂGHz On-Chip Antennas for Integrated Radar Sensors. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2429-2433.	2.4	26
103	Hermetically Sealed Glass Package for Highly Integrated MMICs. , 2019, , .		9
104	A Generalized Model for Two-Element Biomimetic Antenna Arrays. IEEE Transactions on Antennas and Propagation, 2019, 67, 1630-1639.	3.1	13
105	160-GHz Radar Proximity Sensor With Distributed and Flexible Antennas for Collaborative Robots. IEEE Access, 2019, 7, 14977-14984.	2.6	22
106	A comparison of ground-based and airborne SAR systems for the detection of landmines, UXO, and IEDs. , $2019, , .$		6
107	Stepped-Carrier OFDM-Radar Processing Scheme to Retrieve High-Resolution Range-Velocity Profile at Low Sampling Rate. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 1610-1618.	2.9	65
108	Waveform multiplexing using chirp rate diversity for chirp-sequence based MIMO radar systems. , 2018, , .		2

#	Article	IF	CITATIONS
109	Reducing the Radar Cross Section of Microstrip Arrays Using AMC Structures for the Vehicle Integration of Automotive Radars. IEEE Transactions on Antennas and Propagation, 2018, 66, 1456-1464.	3.1	54
110	Radar-based altitude over ground estimation of UAVs. , 2018, , .		9
111	MIMO-OFDM Radar Using a Linear Frequency Modulated Carrier to Reduce Sampling Requirements. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3511-3520.	2.9	22
112	Implementation of a SAR Demonstrator for Automotive Imaging. , 2018, , .		7
113	Human Motion Training Data Generation for Radar Based Deep Learning Applications. , 2018, , .		14
114	Phase Noise Mitigation for Multistatic FMCW Radar Sensor Networks Using Carrier Transmission. IEEE Microwave and Wireless Components Letters, 2018, 28, 1143-1145.	2.0	10
115	Enhancing Angle Estimation for Off-Boresight Targets Using Biomimetic Antenna Arrays. , 2018, , .		О
116	Design and Implementation of a FMCW GPR for UAV-based Mine Detection. , 2018, , .		24
117	Ego-Motion Estimation using Distributed Single-Channel Radar Sensors. , 2018, , .		16
118	Characterization of a mm-Wave Automotive Radar with a Low-RCS MIMO Antenna System. , $2018, , .$		O
119	A Machine Learning Approach for Radar Based Height Estimation. , 2018, , .		o
120	Lightweight Broadband Antennas for UAV based GPR Sensors. , 2018, , .		15
121	Polarimetric SAR for Automotive Applications. , 2018, , .		4
122	122 GHz Monostatic Radar Altimeter for Automated UAV Landing. , 2018, , .		2
123	Dual-Channel Single Sideband Transmitter in 45 nm CMOS SOI for a 70 GHz OFDM Radar. , 2018, , .		О
124	Expanding the Unambiguous Velocity Limitation of the Stepped-Carrier OFDM Radar Scheme. , 2018, , .		12
125	Optimization of Target Separation Capability for FMCW Radar Systems. , 2018, , .		0
126	A Multicopter-Based Focusing Method for Ground Penetrating Synthetic Aperture Radars. , 2018, , .		13

#	Article	IF	Citations
127	Impact of an Automotive Chirp-Sequence Interferer on a Wideband OFDM Radar., 2018,,.		9
128	Deep Learning for Range-Doppler Map Single Frame Classifications of Cooking Processes. , 2018, , .		10
129	Enhancing Angle Estimation for Off-Boresight Targets Using Biomimetic Antenna Arrays. , 2018, , .		O
130	Radar Taking Off: New Capabilities for UAVs. IEEE Microwave Magazine, 2018, 19, 43-53.	0.7	72
131	Antenna Design For Noncoherent Massive MIMO Systems. , 2018, , .		2
132	Region of Interest Based Adaptive High Resolution Parameter Estimation with Applications in Automotive Radar. , 2018, , .		4
133	UAV-Based Ground Penetrating Synthetic Aperture Radar. , 2018, , .		40
134	Performance Investigation of Automotive SAR Imaging. , 2018, , .		36
135	Water Surface Velocity Estimation Using Cooperative Radar Sensors. , 2018, , .		2
136	Improved Throat Vibration Sensing with a Flexible 160-GHz Radar through Harmonic Generation. , 2018, , .		18
137	Radar Based Rain Drop Classification for Industrial Applications. , 2018, , .		O
138	On Hardware Implementations of Stepped-Carrier OFDM Radars. , 2018, , .		11
139	Blind Adaptive Beamforming for Automotive Radar Interference Suppression. , 2018, , .		6
140	Instantaneous Actual Motion Estimation with a Single High-Resolution Radar Sensor. , 2018, , .		6
141	77 GHz radar-based altimeter for unmanned aerial vehicles. , 2018, , .		9
142	On Monostatic and Bistatic System Concepts for mm-Wave Radar MMICs. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 4204-4215.	2.9	22
143	Radiation Pattern Optimization for QFN Packages With On-Chip Antennas at 160 GHz. IEEE Transactions on Antennas and Propagation, 2018, 66, 4552-4562.	3.1	16
144	High-resolution parameter estimation for chirp-sequence radar considering hardware impairments. , 2018, , .		0

#	Article	IF	CITATIONS
145	Enhancement of Doppler Unambiguity for Chirp-Sequence Modulated TDM-MIMO Radars., 2018,,.		27
146	Data rate reduction for chirp-sequence based automotive radars using compressed sensing. , 2018, , .		6
147	High Range and Doppler Resolution by Application of Compressed Sensing Using Low Baseband Bandwidth OFDM Radar. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3535-3546.	2.9	40
148	Vertical Doppler beam sharpening goes self parking. , 2018, , .		7
149	A Cooperative MIMO Radar Network Using Highly Integrated FMCW Radar Sensors. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1355-1366.	2.9	43
150	Analytical and Experimental Investigations on Mitigation of Interference in a DBF MIMO Radar. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1727-1734.	2.9	51
151	Ultracompact 160-GHz FMCW Radar MMIC With Fully Integrated Offset Synthesizer. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1682-1691.	2.9	53
152	A multipath based height estimation of targets for radar systems. , 2017, , .		2
153	Template matching for radar-based orientation and position estimation in automotive scenarios. , 2017, , .		22
154	Vertical digital beamforming versus multipath height finding. , 2017, , .		11
155	Interference of chirp sequence radars by OFDM radars at 77 GHz., 2017,,.		7
156	Reflection Reduction Through Modal Filtering for Integrated Antenna Measurements Above 100 GHz. IEEE Transactions on Antennas and Propagation, 2017, 65, 3712-3720.	3.1	15
157	Optimization of a MIMO radar antenna system for automotive applications. , 2017, , .		20
158	A 160-GHz Radar With Flexible Antenna Used as a Sniffer Probe. IEEE Sensors Journal, 2017, 17, 5104-5111.	2.4	14
159	Hybrid Thin Film Antenna for Automotive Radar at 79 GHz. IEEE Transactions on Antennas and Propagation, 2017, 65, 5076-5085.	3.1	41
160	The Challenges of Measuring Integrated Antennas at Millimeter-Wave Frequencies [Measurements Corner]. IEEE Antennas and Propagation Magazine, 2017, 59, 84-92.	1.2	32
161	Enhancements in mmâ€wave antenna measurements: automatic alignment and achievable accuracy. IET Microwaves, Antennas and Propagation, 2017, 11, 1676-1680.	0.7	7
162	Scattering center determination for integrated antenna measurements at mm-wave frequencies. , 2017, , .		3

#	Article	IF	Citations
163	A dielectric lens antenna fed by a flexible dielectric waveguide at 160 GHz., 2017,,.		14
164	Assessment of a Millimeter-Wave Antenna System for MIMO Radar Applications. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1261-1264.	2.4	25
165	Compensation of Motion-Induced Phase Errors in TDM MIMO Radars. IEEE Microwave and Wireless Components Letters, 2017, 27, 1164-1166.	2.0	70
166	A new height-estimation method using FMCW radar Doppler beam sharpening. , 2017, , .		21
167	Ghost target identification by analysis of the Doppler distribution in automotive scenarios. , 2017, , .		21
168	Automotive radar interference mitigation using a sparse sampling approach. , 2017, , .		62
169	Enhanced angle estimation accuracy of ultra compact radars inspired by a biomimetic approach. , 2017, , .		7
170	Vertical digital beamforming versus vertical Doppler Beam Sharpening. , 2017, , .		O
171	A performance comparison of RELAX and MODE for multipath height finding. , 2017, , .		O
172	Estimation and cancellation of interferences in automotive radar signals. , 2017, , .		32
173	Time-domain correlation radar for fluid surface velocity estimation using a 77 GHz sensor platform. , 2017, , .		13
174	Spatial-frequency-scanning data transmission for mmW multi-user wireless communication systems. , $2017, , .$		1
175	A flexible dielectric leaky-wave antenna at 160 GHz. , 2017, , .		7
176	Improvement of dynamic range for arbitrary radar systems using antenna polarization modulation. , 2017, , .		0
177	Polarimetrie RCS analysis of traffic objects. , 2017, , .		5
178	Wideband low-cost hybrid coupler for mm-wave frequencies. , 2017, , .		6
179	Improvement of dynamic range for arbitrary radar systems using antenna polarization modulation. , 2017, , .		О
180	Wide-angle scanning cavity antenna element for mobile Satcom applications at Ka band. , 2016, , .		5

#	Article	IF	CITATIONS
181	Bats-inspired frequency hopping for mitigation of interference between automotive radars., 2016,,.		41
182	Digital true time delay for pulse correlation radars. , 2016, , .		3
183	Exploiting propagation effects for authentication and misbehavior detection in VANETs. , 2016, , .		1
184	Design and experimental characterization of a surface with low radar cross-section at millimeter-wave frequencies. , $2016, $, .		4
185	Probe influence on integrated antenna measurements at frequencies above 100 GHz., 2016,,.		17
186	Design of experiment for the characterization of a 160 GHz radar MMIC. , 2016, , .		0
187	Accuracy evaluation for antenna measurements at mm-wave frequencies. , 2016, , .		10
188	Digital beamforming to mitigate automotive radar interference. , 2016, , .		29
189	Compact bistatic $160\mathrm{GHz}$ transceiver MMIC with phase noise optimized synthesizer for FMCW radar. , $2016,$, .		5
190	Reliable Orientation Estimation of Vehicles in High-Resolution Radar Images. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 2986-2993.	2.9	33
191	Adaptive clustering for contour estimation of vehicles for high-resolution radar. , 2016, , .		25
192	MMIC-to-waveguide transition at $160\mathrm{GHz}$ with galvanic isolation. , $2016,$, .		13
193	Towards a mm-wave planar biomimetic antenna array with enhanced phase sensitivity. , 2016, , .		6
194	Interesting areas in radar gridmaps for vehicle self-localization. , 2016, , .		13
195	Investigation on a 77-GHz broadside Vivaldi antenna. , 2016, , .		2
196	RCS measurements of a human hand for radar-based gesture recognition at E-band., 2016,,.		16
197	Influence of the wafer chuck on integrated antenna measurements. , 2016, , .		4
198	Range migration compensation for chirp-sequence based radar. , 2016, , .		5

#	Article	lF	Citations
199	Coupling Matrix Extraction and Reconfiguration Using a Generalized Isospectral Flow Method. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 148-157.	2.9	13
200	A 77-GHz cavity antenna array in PCB technology. , 2015, , .		7
201	FMCW ramp non-linearity effects and measurement technique for cooperative radar., 2015,,.		O
202	On the influence of the antenna pattern in noncoherent massive MIMO systems. , 2015, , .		6
203	Wireless channel-based message authentication. , 2015, , .		5
204	Robotically controlled directivity and gain measurements of integrated antennas at 280 GHz., 2015,,.		21
205	An automated millimeter-wave antenna measurement setup using a robotic arm. , 2015, , .		19
206	3D transition between thin and thick waveguides to interconnect chip and antenna-in-package. , 2015, , .		О
207	The 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility [Conference Report]. IEEE Microwave Magazine, 2015, 16, 82-83.	0.7	o
208	Substrate integrated waveguide slot-fed grid array antenna. , 2015, , .		2
209	New pre-estimation algorithm for FMCW radar systems using the Matrix Pencil Method. , 2015, , .		5
210	Substrate integrated waveguide slot-fed grid array antenna. , 2015, , .		0
211	FMCW ramp non-linearity effects and measurement technique for cooperative radar., 2015, , .		8
212	SAR imaging in an automotive scenario. , 2015, , .		33
213	Contour recognition with a cooperative distributed radar sensor network. , $2015, \ldots$		16
214	Automotive radar gridmap representations. , 2015, , .		61
215	Estimation of the orientation of vehicles in high-resolution radar images. , 2015, , .		17
216	Automotive radar interference mitigation by reconstruction and cancellation of interference component. , $2015, , .$		36

#	Article	IF	CITATIONS
217	Active transmitarray submodule for K/Ka Band Satcom applications. , 2015, , .		19
218	Design and characterization concepts of a broadband chip-integrated antenna., 2014,,.		12
219	Future trends and directions in radar concerning the application for autonomous driving. , 2014, , .		5
220	A wideband variable width microstrip grid array antenna. , 2014, , .		7
221	Future trends and directions in radar concerning the application for autonomous driving., 2014,,.		6
222	A wideband variable width microstrip grid array antenna. , 2014, , .		3
223	Coupled evanescent mode resonator filter using a defective ground structure to increase coupling. , 2014, , .		0
224	How do traffic signs look like in radar?. , 2014, , .		8
225	Performance degradation in cooperative radar sensor systems due to Uncorrelated Phase Noise. , 2014, , .		17
226	High-efficiency horn antenna using solder balls for seamless package with millimeter-wave 3D chips. , 2014, , .		0
227	Key aspects of robot based antenna measurements at millimeter wave frequencies. , 2014, , .		9
228	Reflection, Refraction, and Self-Jamming. IEEE Microwave Magazine, 2012, 13, 107-117.	0.7	17
229	Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 845-860.	2.9	1,020
230	EMI system model for a gearbox electronic control unit. , 2008, , .		0
231	Complete RF System Model for Analysis of Compact MIMO Arrays. IEEE Transactions on Vehicular Technology, 2004, 53, 579-586.	3.9	99
232	Electromagnetic Characterization of Ultra Wideband Antennas. Springer Proceedings in Physics, 2004, , 225-234.	0.1	3
233	Spiral and dipole antennas for indoor MIMO-systems. IEEE Antennas and Wireless Propagation Letters, 2002, 1, 176-178.	2.4	20
234	A Novel Target-Height Estimation Approach Using Radar-Wave Multipath Propagation for Automotive Applications. Advances in Radio Science, 0, 15, 61-67.	0.7	9