Konstantinos A Matis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoadsorbents for pollutants removal: A review. Journal of Molecular Liquids, 2015, 203, 159-168.	4.9	327
2	Graphene oxide and its application as an adsorbent for wastewater treatment. Journal of Chemical Technology and Biotechnology, 2014, 89, 196-205.	3.2	322
3	Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 2003, 37, 4018-4026.	11.3	305
4	Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Research, 2003, 37, 4544-4552.	11.3	267
5	Optimization of Hydrothermal Pretreatment of Lignocellulosic Biomass in the Bioethanol Production Process. ChemSusChem, 2013, 6, 110-122.	6.8	264
6	Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 242, 93-104.	4.7	234
7	Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 74-83.	4.7	178
8	New approaches on the removal of pharmaceuticals from wastewaters with adsorbent materials. Journal of Molecular Liquids, 2015, 209, 87-93.	4.9	172
9	The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters. Materials, 2013, 6, 5131-5158.	2.9	156
10	Optimization of Hydrothermal Pretreatment of Hardwood and Softwood Lignocellulosic Residues for Selective Hemicellulose Recovery and Improved Cellulose Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2016, 4, 4529-4544.	6.7	151
11	Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons. Microporous and Mesoporous Materials, 2009, 117, 257-267.	4.4	141
12	Removal of hexavalent chromium anions from solutions by pyrite fines. Water Research, 1995, 29, 1755-1760.	11.3	138
13	Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant–akaganeite sorbent. Journal of Colloid and Interface Science, 2006, 302, 458-466.	9.4	113
14	Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 2007, 141, 176-184.	12.4	109
15	Various flotation techniques for metal ions removal. Journal of Molecular Liquids, 2017, 225, 260-264.	4.9	104
16	Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology and Biotechnology, 2011, 86, 335-344.	3.2	103
17	Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions. Open Chemistry, 2015, 13, .	1.9	102
18	Akaganéite-type β-FeO(OH) nanocrystals: preparation and characterization. Microporous and Mesoporous Materials, 2001, 42, 49-57.	4.4	101

KONSTANTINOS A MATIS

#	Article	IF	CITATIONS
19	Flotation removal of As(V) onto goethite. Environmental Pollution, 1997, 97, 239-245.	7.5	95
20	Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 83-90.	4.7	93
21	Recovery of Metals by Ion Flotation from Dilute Aqueous Solutions. Separation and Purification Reviews, 1991, 20, 1-48.	0.8	92
22	Electroflotation process: A review. Journal of Molecular Liquids, 2016, 220, 657-664.	4.9	92
23	Flotation in Water and Wastewater Treatment. Processes, 2018, 6, 116.	2.8	92
24	The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Research, 1998, 32, 400-406.	11.3	89
25	The use of biosurfactants in flotation: application for the removal of metal ions. Minerals Engineering, 2003, 16, 1231-1236.	4.3	81
26	Copper removal from effluents by various separation techniques. Hydrometallurgy, 2004, 74, 149-156.	4.3	81
27	Akaganeite and goethite-type nanocrystals: synthesis and characterization. Microporous and Mesoporous Materials, 2003, 59, 35-42.	4.4	72
28	Removal of metal lons from dilute aqueous solutions: A comparative study of inorganic sorbent materials. Chemosphere, 1999, 39, 881-892.	8.2	71
29	Enhancing Lignocellulosic Biomass Hydrolysis by Hydrothermal Pretreatment, Extraction of Surface Lignin, Wet Milling and Production of Cellulolytic Enzymes. ChemSusChem, 2019, 12, 1179-1195.	6.8	70
30	Removal of toxic metals from aqueous mixtures. Part 1: Biosorption. Journal of Chemical Technology and Biotechnology, 1999, 74, 429-436.	3.2	64
31	Separation of fines by flotation techniques. Separation and Purification Technology, 1993, 3, 76-90.	0.7	63
32	Modelling the sorption of metals from aqueous solutions on goethite fixed-beds. Environmental Pollution, 2001, 113, 121-128.	7.5	63
33	Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents. Journal of Hazardous Materials, 2009, 172, 550-558.	12.4	62
34	Flotation of cadmium-loaded biomass. Biotechnology and Bioengineering, 1994, 44, 354-360.	3.3	57
35	Removal of metal ions from dilute solutions by sorptive flotation. Critical Reviews in Environmental Science and Technology, 1997, 27, 195-235.	12.8	57
36	Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 2004, 11, 18-21.	5.3	55

Konstantinos A Matis

#	Article	IF	CITATIONS
37	Bubble–particle collision interaction in flotation systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 473, 95-103.	4.7	55
38	Alternative Flotation Techniques for Wastewater Treatment: Focus on Electroflotation. Separation Science and Technology, 2010, 45, 2465-2474.	2.5	53
39	Biosorption of Metals from Dilute Aqueous Solutions. Separation and Purification Reviews, 1997, 26, 255-295.	0.8	52
40	Removal of toxic metal ions from aqueous systems by biosorptive flotation. Journal of Chemical Technology and Biotechnology, 2002, 77, 958-964.	3.2	50
41	The application of sorptive flotation for the removal of metal ions. Desalination, 2004, 162, 159-168.	8.2	50
42	A fundamental rotating disk study of gold dissolution in iodine-iodide solutions. Hydrometallurgy, 1993, 34, 49-64.	4.3	48
43	A perspective on flotation: a review. Journal of Chemical Technology and Biotechnology, 2018, 93, 615-623.	3.2	47
44	Diffusion Kinetic Study of Chromium(VI) Biosorption by Aeromonas caviae. Industrial & Engineering Chemistry Research, 2004, 43, 1748-1755.	3.7	46
45	Study of flotation conditions for cadmium(II) removal from aqueous solutions. Chemical Engineering Research and Design, 2015, 94, 203-211.	5.6	46
46	Metal biosorption by PAN-immobilized fungal biomass in simulated wastewaters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 185-195.	4.7	44
47	Diffusion kinetic study of cadmium(II) biosorption byAeromonas caviae. Journal of Chemical Technology and Biotechnology, 2004, 79, 711-719.	3.2	44
48	Application of flotation for the separation of metal-loaded zeolites. Chemosphere, 2004, 55, 65-72.	8.2	42
49	A hybrid flotation—microfiltration process for metal ions recovery. Journal of Membrane Science, 2005, 247, 29-35.	8.2	39
50	Adsorption of reactive dyes from aqueous solutions by layered double hydroxides. Journal of Chemical Technology and Biotechnology, 2012, 87, 575-582.	3.2	39
51	CFD Model for the Design of Large Scale Flotation Tanks for Water and Wastewater Treatment. Industrial & Engineering Chemistry Research, 2007, 46, 6590-6599.	3.7	36
52	The Flotation Process Can Go Green. Processes, 2019, 7, 138.	2.8	36
53	Anionic flotation of magnesium carbonates by modifiers. International Journal of Mineral Processing, 1989, 25, 261-274.	2.6	35
54	A study and modelling of liquid-phase mixing in a flotation column. International Journal of Mineral Processing, 1989, 26, 1-16.	2.6	35

4

KONSTANTINOS A MATIS

#	Article	IF	CITATIONS
55	Removal of phosphates from water by a hybrid flotation–membrane filtration cell. Desalination, 2006, 198, 198-207.	8.2	34
56	Application of flotation as a pretreatment process during desalination. Desalination, 2008, 222, 1-8.	8.2	32
57	Separation of germanium and arsenic from solutions by flotation. International Journal of Mineral Processing, 1987, 21, 83-92.	2.6	31
58	Water Separation Processes and Sustainability. Industrial & Engineering Chemistry Research, 2011, 50, 421-430.	3.7	31
59	Air sparging during the solid/liquid separation by microfiltration: application of flotation. Separation and Purification Technology, 2004, 40, 1-7.	7.9	29
60	Processing of magnesium carbonate fines by dissolved-air flotation. Colloids and Surfaces, 1988, 29, 191-203.	0.9	28
61	A hybrid MF process based on flotation. Journal of Membrane Science, 2004, 228, 83-88.	8.2	27
62	Foam/Froth Flotation. Separation and Purification Reviews, 1991, 20, 163-198.	0.8	26
63	Sorptive flotation for metal ions recovery. International Journal of Mineral Processing, 2003, 70, 99-108.	2.6	26
64	Parameters influencing flotation in removal of metal ions. International Journal of Environmental Studies, 1990, 35, 183-196.	1.6	25
65	Modeling local flotation frequency in a turbulent flow field. Advances in Colloid and Interface Science, 2006, 122, 79-91.	14.7	24
66	Adsorption of Pb ²⁺ Using Mesoporous Activated Carbon and its Effects on Surface Modifications. Adsorption Science and Technology, 2012, 30, 627-645.	3.2	24
67	Technologies of winery wastewater treatment: a critical approach. Desalination and Water Treatment, 2016, 57, 3372-3386.	1.0	24
68	Removal of As(V) Ions from Solution by Akaganeite bgr-FeO(OH) Nanocrystals. Journal of Mining Science, 2003, 39, 287-296.	0.6	23
69	New Biosorbent Materials: Selectivity and Bioengineering Insights. Processes, 2014, 2, 419-440.	2.8	22
70	Heavy Metals Removal by Biosorption and Flotation. Water, Air and Soil Pollution, 2003, 3, 143-151.	0.8	21
71	A hybrid flotation–microfiltration cell for solid/liquid separation: operational characteristics. Desalination, 2006, 194, 135-145.	8.2	21
72	Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal. Journal of Chemical Technology and Biotechnology, 2013, 88, 1058-1066.	3.2	21

Konstantinos A Matis

#	Article	IF	CITATIONS
73	Cadmium(II) Biosorption by <i>Aeromonas caviae</i> : Kinetic Modeling. Separation Science and Technology, 2005, 40, 1293-1311.	2.5	19
74	Metal recovery from a copper mine effluent by a hybrid process. Chemical Engineering and Processing: Process Intensification, 2008, 47, 596-602.	3.6	19
75	Flotation of powdered activated carbon with adsorbed gold(I)-thiourea complex. Hydrometallurgy, 1994, 36, 39-51.	4.3	18
76	FLOTATION TECHNIQUES IN WATER TECHNOLOGY FOR METALS RECOVERY: THE IMPACT OF SPECIATION. Separation Science and Technology, 2001, 36, 3777-3800.	2.5	18
77	Methods of arsenic wastes recycling: Focus on flotation. Journal of Molecular Liquids, 2016, 214, 37-45.	4.9	18
78	From Microbubbles to Nanobubbles: Effect on Flotation. Processes, 2021, 9, 1287.	2.8	16
79	A statistical approach to precipitate flotation of. International Journal of Mineral Processing, 1988, 24, 203-216.	2.6	15
80	Processing a bulk pyrite concentrate by flotation reagents. Minerals Engineering, 1992, 5, 331-342.	4.3	15
81	Sorption of Arsenic Oxyanions from Aqueous Solution on Goethite: a Study of Process Modelling. Mikrochimica Acta, 2005, 151, 269-275.	5.0	14
82	Recovery of gold from thiourea solutions by flotation. Hydrometallurgy, 1993, 34, 79-90.	4.3	13
83	Flotation as a bioseparation process for fungi removal. Biotechnology Letters, 1993, 7, 867-872.	0.5	13
84	Hydrodynamic aspects of flotation separation. Open Chemistry, 2016, 14, 132-139.	1.9	12
85	Two-phase simulations of an off-nominally operating dissolved-air flotation tank. International Journal of Environment and Pollution, 2007, 30, 213.	0.2	11
86	A hybrid flotation–microfiltration cell for effluent treatment. Desalination, 2009, 248, 881-890.	8.2	11
87	Biosorptive flotation for metal ions removal: the influence of surface tension. Desalination, 2009, 248, 740-752.	8.2	11
88	Emerging nanocomposite biomaterials as biomedical adsorbents: an overview. Composite Interfaces, 2018, 25, 415-454.	2.3	11
89	Selective separation of arsenopyrite from an auriferous pyrite concentrate by sulphonate flotation. International Journal of Mineral Processing, 1993, 38, 141-151.	2.6	10
90	Hydrothermally produced activated carbons from zero-cost green sources for cobalt ions removal. , 0, 123, 288-299.		10

#	Article	IF	CITATIONS
91	Selective flotation of an auriferous bulk pyrite - arsenopyrite concentrate in presence of sodium sulphoxy - salts. Minerals Engineering, 1993, 6, 1257-1264.	4.3	9
92	Arsenopyrite enrichment by column flotation. Minerals Engineering, 1993, 6, 1265-1277.	4.3	9
93	Processing an Auriferous Pyrite Concentrate in the Presence of Reducing Agents. Canadian Metallurgical Quarterly, 1995, 34, 15-20.	1.2	9
94	Separation of Tungstates from Aqueous Mixtures Containing Impurities (Arsenate, Phosphate and) Tj ETQq0 0 0 195-203.	rgBT /Over 3.2	lock 10 Tf 5 9
95	A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein inEscherichia coli. Biotechnology and Bioengineering, 2002, 78, 321-332.	3.3	8
96	A New Hybrid Flotation—Microfiltration Cell. Separation Science and Technology, 2006, 41, 3229-3243.	2.5	7
97	Cadmium ion removal by electroflotation onto sewage sludge biomass. International Journal of Environment and Waste Management, 2012, 9, 245.	0.3	7
98	Flotation of Biological Materials. Processes, 2014, 2, 293-310.	2.8	7
99	Flotation. Interface Science and Technology, 2019, 30, 15-42.	3.3	7
100	Foam flotation for fine particles removal from water: The example of zeolites. Toxicological and Environmental Chemistry, 1991, 31, 611-619.	1.2	6
101	Two- and three-phase simulations of an ill-functioning dissolved-air flotation tank. International Journal of Environment and Waste Management, 2011, 8, 215.	0.3	6
102	The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. , 2013, , 217-260.		6
103	A critical review of the separation of arsenic oxyanions from dilute aqueous solution (the) Tj ETQq1 1 0.784314 r	gBT /Overl 0.3	oçk 10 Tf 5(
104	A dissolved-air flotation microcell for floatability tests with particulate systems. Separation and Purification Technology, 1991, 1, 255-258.	0.7	4
105	The process of flotation: an efficient solid/liquid separation technique for biological materials. International Journal of Environment and Pollution, 2008, 32, 29.	0.2	4
106	Extraction and Flameless AAS Determination of Germanium in Lignite Fly Ash. Analytical Letters, 1985, 18, 2467-2475.	1.8	3
107	Fatty acids removal from effluent on mineral fines. Environmental Technology (United Kingdom), 1990, 11, 811-820.	2.2	3
108	Electrolytic flotation in effluent treatment. Journal of Chemical Technology and Biotechnology, 1981,	0.2	3

31, 431-434.

KONSTANTINOS A MATIS

#	ARTICLE	IF	CITATIONS
109	Removal of arsenites onto akaganeite-type adsorbents. International Journal of Environment and Waste Management, 2008, 2, 279.	0.3	3
110	Wastewater Treatment Processes: Part I. Processes, 2020, 8, 334.	2.8	3
111	Adsorption of endocrine disruptor bisphenol A by carbonaceous materials: influence of their porosity and specific surface area. , 0, 76, 232-240.		3
112	The application of flotation for the downstream separation of metal-loaded microorganisms. International Journal of Environment and Pollution, 2007, 30, 287.	0.2	2
113	The recovery of copper from a copper mine effluent in a hybrid flotation/microfiltration cell. International Journal of Environment and Pollution, 2007, 30, 273.	0.2	2
114	A hybrid flotation: microfiltration cell for effluent treatment. International Journal of Environment and Waste Management, 2011, 8, 273.	0.3	2
115	Flotation in the 2010s. Interface Science and Technology, 2019, , 43-68.	3.3	2
116	Metal Ion Extraction by Microorganism Biomass and Sorption Flotation. Journal of Mining Science, 2003, 39, 78-86.	0.6	1
117	Inorganic Nanoadsorbent: Akagan $ ilde{A}$ ©ite in Wastewater Treatment. , 2019, , 337-358.		1
118	Biosorbents for heavy metal removal from dilute aqueous solution. , 2020, , 105-132.		1
119	Green Separation and Extraction Processes: Part I. Processes, 2020, 8, 374.	2.8	1
120	On the combination of modern sorbents with cost analysis: A review. Journal of Molecular Structure, 2021, 1229, 129841.	3.6	1
121	Reply to "Comment on the Removal Mechanism of Hexavalent Chromium by Biomaterials or Biomaterials-Based Activated Carbons―(Comment on "Diffusion Kinetic Study of Chromium(VI)) Tj ETQq1 1 2408-2408.	0,784314 3.7	l rgBT /Over