

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181630/publications.pdf Version: 2024-02-01

VIN HU

#	Article	IF	CITATIONS
1	An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy and Environmental Science, 2021, 14, 4115-4124.	15.6	376
2	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
3	Adsorption atalysis Design in the Lithium‣ulfur Battery. Advanced Energy Materials, 2020, 10, 1903008.	10.2	275
4	Strategies toward High‣oading Lithium–Sulfur Battery. Advanced Energy Materials, 2020, 10, 2000082.	10.2	272
5	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie - International Edition, 2019, 58, 17458-17464.	7.2	255
6	Atomic Interlamellar Ion Path in High Sulfur Content Lithiumâ€Montmorillonite Host Enables Highâ€Rate and Stable Lithium–Sulfur Battery. Advanced Materials, 2018, 30, e1804084.	11.1	201
7	Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition. Nature Communications, 2019, 10, 4973.	5.8	144
8	A Nonflammable and Thermotolerant Separator Suppresses Polysulfide Dissolution for Safe and Longâ€Cycle Lithium‣ulfur Batteries. Advanced Energy Materials, 2018, 8, 1802441.	10.2	133
9	Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews, 2016, 320-321, 66-81.	9.5	122
10	Heterostructured NiS ₂ /ZnIn ₂ S ₄ Realizing Toroid-like Li ₂ O ₂ Deposition in Lithium–Oxygen Batteries with Low-Donor-Number Solvents. ACS Nano, 2020, 14, 3490-3499.	7.3	113
11	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	10.2	112
12	Carbon Quantum Dots–Modified Interfacial Interactions and Ion Conductivity for Enhanced High Current Density Performance in Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802955.	10.2	102
13	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 2020, 68, 104373.	8.2	95
14	Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon, 2017, 122, 389-394.	5.4	63
15	Selfâ€Confined Growth of Ultrathin 2D Nonlayered Wideâ€Bandgap Semiconductor CuBr Flakes. Advanced Materials, 2019, 31, e1903580.	11.1	61
16	An Efficient Separator with Low Liâ€ion Diffusion Energy Barrier Resolving Feeble Conductivity for Practical Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901800.	10.2	61
17	Identification of Key Reversible Intermediates in Selfâ€Reconstructed Nickelâ€Based Hybrid Electrocatalysts for Oxygen Evolution. Angewandte Chemie, 2019, 131, 17619-17625.	1.6	45
18	In Situ/Operando Raman Techniques in Lithium–Sulfur Batteries. Small Structures, 2022, 3, .	6.9	44

Υιν Ηυ

#	Article	IF	CITATIONS
19	Photoexcited state properties of carbon dots from thermally induced functionalization of carbon nanoparticles. Journal of Materials Chemistry C, 2016, 4, 10554-10561.	2.7	37
20	3D Printed Li–S Batteries with In Situ Decorated Li ₂ S/C Cathode: Interface Engineering Induced Loadingâ€Insensitivity for Scaled Areal Performance. Advanced Energy Materials, 2021, 11, 2100420.	10.2	37
21	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
22	Ferroelectric polarization accelerates lithium-ion diffusion for dendrite-free and highly-practical lithium-metal batteries. Nano Energy, 2021, 79, 105481.	8.2	32
23	Genetic engineering of porous sulfur species with molecular target prevents host passivation in lithium sulfur batteries. Energy Storage Materials, 2020, 26, 65-72.	9.5	31
24	Host–guest carbon dots as high-performance fluorescence probes. Journal of Materials Chemistry C, 2017, 5, 6328-6335.	2.7	28
25	Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing. Chemical Physics Letters, 2016, 647, 165-169.	1.2	21
26	NiO nanosheets grown on carbon cloth as mesoporous cathode for High-performance lithium-sulfur battery. Materials Letters, 2020, 268, 127622.	1.3	21
27	Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 9771-9779.	5.2	21
28	Carbon-Intercalated Montmorillonite as Efficient Polysulfide Mediator for Enhancing the Performance of Lithium–Sulfur Batteries. Energy & Fuels, 2020, 34, 8947-8955.	2.5	19
29	Preparation and optical properties of magnetic carbon/iron oxide hybrid dots. RSC Advances, 2017, 7, 41304-41310.	1.7	17
30	Modulated photoluminescence of graphene quantum dots in the vicinity of an individual silver nano-octahedron. Physical Chemistry Chemical Physics, 2014, 16, 4504.	1.3	14
31	Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy, 2022, 92, 106708.	8.2	14
32	An approach to controlling the fluorescence of graphene quantum dots: From surface oxidation to fluorescent mechanism. Chinese Physics B, 2014, 23, 128103.	0.7	13
33	Ionâ€Inserted Metal–Organic Frameworks Accelerate the Mass Transfer Kinetics in Lithium–Sulfur Batteries. Small, 2021, 17, e2104367.	5.2	13
34	Mapping Techniques for the Design of Lithiumâ€ 5 ulfur Batteries. Small, 2022, 18, e2106657.	5.2	13
35	On-chip high-energy interdigital micro-supercapacitors with 3D nanotubular array electrodes. Journal of Materials Chemistry A, 2022, 10, 14051-14059.	5.2	13
36	Defect-introduced graphene sheets with hole structure as lithium-ion battery anode. Materials Letters, 2016, 164, 278-281.	1.3	12

Yin Hu

#	Article	IF	CITATIONS
37	Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions. Chinese Physics B, 2018, 27, 056104.	0.7	10
38	Silica-covered Au nanoresonators for fluorescence modulating of a graphene quantum dot. Chinese Physics B, 2014, 23, 097803.	0.7	5
39	Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Chinese Physics B, 2017, 26, 066102.	0.7	5
40	Mesoporous NiCo ₂ O ₄ nanoparticles as cathode additive for high-performance lithium sulfur battery. Journal of Physics: Conference Series, 2020, 1707, 012006.	0.3	4