StanisÅ,aw Bielecki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181467/publications.pdf Version: 2024-02-01

STANISÅ AV RIFLECKL

#	Article	IF	CITATIONS
1	Microbial cellulose—the natural power to heal wounds. Biomaterials, 2006, 27, 145-151.	11.4	1,010
2	Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process. Renewable Energy, 2009, 34, 1185-1194.	8.9	405
3	Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 189-195.	3.0	273
4	– New methods Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Archives of Medical Science, 2013, 3, 527-534.	0.9	105
5	Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 2019, 12, 633-649.	4.2	83
6	A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 2003, 7, 435-442.	2.3	80
7	Microbial β-Glucanases Different from Cellulases. Critical Reviews in Biotechnology, 1991, 10, 275-304.	9.0	70
8	Relationships between lipases and lipids in mycelia of two Mucor strains. Enzyme and Microbial Technology, 2006, 39, 1214-1222.	3.2	65
9	Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase. New Biotechnology, 2003, 20, 317-324.	2.7	57
10	Crystal structures of the <i>apo</i> form of βâ€fructofuranosidase from <i>Bifidobacterium longum</i> and its complex with fructose. FEBS Journal, 2011, 278, 1728-1744.	4.7	56
11	Complete genome sequence of Gluconacetobacter xylinus E25 strain—Valuable and effective producer of bacterial nanocellulose. Journal of Biotechnology, 2014, 176, 18-19.	3.8	53
12	Comparative genomics of the <i>Komagataeibacter</i> strains—Efficient bionanocellulose producers. MicrobiologyOpen, 2019, 8, e00731.	3.0	51
13	Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Processing Technology, 2015, 131, 430-436.	7.2	48
14	Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity. Cellulose, 2019, 26, 5409-5426.	4.9	42
15	The effect of nitrate and ammonium ions on kinetics of diesel oil degradation by Gordonia alkanivorans S7. International Biodeterioration and Biodegradation, 2008, 61, 214-222.	3.9	39
16	The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell, Tissue and Organ Culture, 2017, 128, 479-486.	2.3	38
17	Isolation and properties of Aspergillus niger IBT-90 xylanase for bakery. Applied Microbiology and Biotechnology, 2006, 69, 665-671.	3.6	36
18	Thermostability and esterification activity ofMucor javanicus lipase entrapped in silica aerogel matrix and in organic solvents. Biotechnology Letters, 1997, 11, 9-11.	0.5	35

StanisÅ, aw Bielecki

#	Article	IF	CITATIONS
19	Immobilization of dextransucrase and its use with soluble dextranase for glucooligosaccharides synthesis. Enzyme and Microbial Technology, 2004, 34, 555-560.	3.2	35
20	Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Applied Microbiology and Biotechnology, 2019, 103, 6673-6688.	3.6	35
21	Medical and Cosmetic Applications ofÂBacterial NanoCellulose. , 2016, , 145-165.		33
22	Stable composite of bacterial nanocellulose and perforated polypropylene mesh for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 978-987.	3.4	33
23	Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum Acta Biochimica Polonica, 2019, 52, 691-698.	0.5	31
24	Efficient expression and secretion of two co-produced xylanases from Aspergillus niger in Pichia pastoris directed by their native signal peptides and the Saccharomyces cerevisiae α-mating factor. Enzyme and Microbial Technology, 2006, 39, 683-689.	3.2	29
25	Purification and characterization of two endo-1,4-β-xylanases from Antarctic krill, Euphausia superba Dana. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 127, 325-335.	1.6	28
26	Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582. New Biotechnology, 2019, 52, 60-68.	4.4	28
27	Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Applied Microbiology and Biotechnology, 2020, 104, 6565-6585.	3.6	28
28	Catalytic properties of membrane-bound Mucor lipase immobilized in a hydrophilic carrier. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 261-268.	1.8	27
29	Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Applied Microbiology and Biotechnology, 2019, 103, 5339-5353.	3.6	26
30	Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochemistry, 2011, 46, 1963-1972.	3.7	24
31	Assessment of usefulness exhibited by different tacks in laparoscopic ventral hernia repair. Surgical Endoscopy and Other Interventional Techniques, 2007, 21, 925-928.	2.4	20
32	Novel Bionanocellulose/κ-Carrageenan Composites for Tissue Engineering. Applied Sciences (Switzerland), 2018, 8, 1352.	2.5	20
33	Stabilization of an intracellular Mucor circinelloides lipase for application in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 163-171.	1.8	19
34	Improvement of efficiency of brown coal biosolubilization by novel recombinant Fusarium oxysporum laccase. AMB Express, 2018, 8, 133.	3.0	19
35	Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically. Nanomaterials, 2018, 8, 1066.	4.1	19
36	Stability of extracellular proteinase productivity by Bacillus subtilis cells immobilized in PVA-cryogel. Enzyme and Microbial Technology, 2004, 34, 168-176.	3.2	18

StanisÅ, aw Bielecki

#	Article	IF	CITATIONS
37	Response surface methodology-based improvement of the yield and differentiation of properties of bacterial cellulose by metabolic enhancers. International Journal of Biological Macromolecules, 2021, 187, 584-593.	7.5	18
38	Bacterial NanoCellulose Characterization. , 2016, , 59-71.		17
39	Solid phase peptide synthesis: Fluoride ion release of protected peptide fragments. Tetrahedron, 1992, 48, 499-514.	1.9	16
40	Diversity of laccase-coding genes in Fusarium oxysporum genomes. Frontiers in Microbiology, 2015, 6, 933.	3.5	16
41	Bacterial NanoCellulose Synthesis, RecentÂFindings. , 2016, , 19-46.		16
42	Activation of Mucor circinelloides lipase in organic medium. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 287-294.	1.8	15
43	Sugar ester synthesis by a mycelium-bound Mucor circinelloides lipase in a micro-reactor equipped with water activity sensor. Journal of Molecular Catalysis B: Enzymatic, 2004, 29, 155-161.	1.8	15
44	PVA-biocatalyst with entrapped viable Bacillus subtilis cells. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 671-676.	1.8	13
45	Mathematical modelling of ester synthesis by lipase in biphasic system. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 1043-1050.	1.8	13
46	The unique cold-adapted extracellular subtilase from psychrophilic yeast Leucosporidium antarcticum. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 39-42.	1.8	13
47	Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100022.	2.6	13
48	Evolved Fusarium oxysporum laccase expressed in Saccharomyces cerevisiae. Scientific Reports, 2020, 10, 3244.	3.3	12
49	Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers, 2021, 13, 4455.	4.5	12
50	Isolation and preliminary characterization of a respiratory nitrate reductase from hydrocarbon-degrading bacterium Gordonia alkanivorans S7. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 625-629.	3.0	11
51	Biocompatibility of Modified Bionanocellulose and Porous Poly(Їµ-caprolactone) Biomaterials. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 518-526.	3.4	10
52	BNC Biosynthesis with Increased Productivity in a Newly Designed Surface Air-Flow Bioreactor. Applied Sciences (Switzerland), 2020, 10, 3850.	2.5	10
53	Synthesis of Oligosaccharides by β-Fructofuranosidase in Biphasic Medium Containing Organic Solvent as Bulk Phase. Biocatalysis and Biotransformation, 1996, 13, 217-231.	2.0	8
54	Oligosaccharide synthesis by invertase in organic media containing SDS. Biotechnology Letters, 1998, 20, 287-290.	2.2	8

StanisÅ, aw Bielecki

#	Article	IF	CITATIONS
55	Activity of immobilised in situ intracellular lipases from Mucor circinelloides and Mucor racemosus in the synthesis of sucrose esters. Progress in Biotechnology, 2000, 17, 221-227.	0.2	8
56	Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum. Acta Biochimica Polonica, 2005, 52, 691-8.	0.5	7
57	Characterization of non-flocculent cells isolated from a culture of flocculentSaccharomyces cerevisiaeNCYC 1001. FEMS Microbiology Letters, 1989, 61, 189-194.	1.8	6
58	Effect of fructose and glucose supplementation on invertase mediated synthesis of oligosaccharides from sucrose. Biotechnology Letters, 1995, 17, 519-524.	2.2	6
59	Molecular modelling of a psychrophilic β-galactosidase. Biocatalysis and Biotransformation, 2005, 23, 201-209.	2.0	6
60	Taxonomic Review and Microbial Ecology inÂBacterial NanoCellulose Fermentation. , 2016, , 1-17.		6
61	Application of a continuous bioreactor cascade to study the effect of linoleic acid on hybridoma cell physiology. Biotechnology and Bioengineering, 2006, 95, 370-383.	3.3	5
62	Extracellular Nucleotides Affect the Proangiogenic Behavior of Fibroblasts, Keratinocytes, and Endothelial Cells. International Journal of Molecular Sciences, 2022, 23, 238.	4.1	5
63	Specificity of Endo-β-1,3-glucanase G A from Cellulomonas cellulans towards Structurally Diversified Acceptor Molecules in Transglycosylation Rreaction. Biocatalysis and Biotransformation, 2002, 20, 95-100.	2.0	3
64	Oligosaccharide synthesis by endo-β-1,3-glucanase GA from Cellulomonas cellulans. Progress in Biotechnology, 2000, 17, 163-169.	0.2	2
65	Medical Devices Regulation. , 2016, , 167-178.		1
66	Molecular Control Over BNC Biosynthesis. , 2016, , 47-58.		1
67	Enhancement of invertase activity in organic media for oligosaccharide synthesis. Progress in Biotechnology, 1998, 15, 423-428.	0.2	0
68	Rapid isolation of kestose by low-pressure chromatography after enzymatic synthesis with invertase. Biotechnology Letters, 1999, 13, 625-629.	0.5	0
69	Putative motility-related genes in Gluconacetobacter xylinus. Initial verification of their influence on BioNanoCellulose biosynthesis. New Biotechnology, 2014, 31, S109.	4.4	Ο