Galya Staneva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181227/publications.pdf

Version: 2024-02-01

516561 526166 44 769 16 27 citations g-index h-index papers 45 45 45 1070 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Myconoside interacts with the plasma membranes and the actin cytoskeleton and provokes cytotoxicity in human lung adenocarcinoma A549 cells. Journal of Bioenergetics and Biomembranes, 2022, 54, 31-43.	1.0	4
2	Electroporation, electrochemotherapy and electro-assisted drug delivery in cancer. A state-of-the-art review. Biophysical Chemistry, 2022, 286, 106819.	1. 5	7
3	Design, Cytotoxicity and Antiproliferative Activity of 4-Amino-5-methyl-thieno[2,3-d]pyrimidine-6-carboxylates against MFC-7 and MDA-MB-231 Breast Cancer Cell Lines. Molecules, 2022, 27, 3314.	1.7	3
4	Rhamnolipid Biosurfactantsâ€"Possible Natural Anticancer Agents and Autophagy Inhibitors. Separations, 2021, 8, 92.	1.1	16
5	Quercetin affects membrane lipids and apoptosis in three-dimensional fibroblast cultures. Biotechnology and Biotechnological Equipment, 2021, 35, 943-952.	0.5	2
6	Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods. Methods in Molecular Biology, 2021, 2187, 47-86.	0.4	5
7	Dielectric Properties of Phosphatidylcholine Membranes and the Effect of Sugars. Membranes, 2021, 11, 847.	1.4	11
8	Elasticity and phase behaviour of biomimetic membrane systems containing tetraether archaeal lipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124974.	2.3	9
9	Miscibility of hBest1 and sphingomyelin in surface films $\hat{a} \in \text{``A prerequisite for interaction with}$ membrane domains. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110893.	2.5	4
10	Improved Characterization of Raft-Mimicking Phase-Separation Phenomena in Lipid Bilayers Using Laurdan Fluorescence with Log-Normal Multipeak Analysis. Langmuir, 2020, 36, 4347-4356.	1.6	5
11	pH sensing by lipids in membranes: The fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2042-2063.	1.4	46
12	The Alzheimer's disease amyloid \hat{l}^2 peptide affects the size-dynamics of raft-mimicking Lo domains in GM1-containing lipid bilayers. Soft Matter, 2018, 14, 9609-9618.	1.2	18
13	Phospholipase A2-Induced Remodeling Processes on Liquid-Ordered/Liquid-Disordered Membranes Containing Docosahexaenoic or Oleic Acid: A Comparison Study. Langmuir, 2016, 32, 1756-1770.	1.6	14
14	On the possible structural role of single chain sphingolipids Sphingosine and Sphingosine 1-phosphate in the amyloid-β peptide interactions with membranes. Consequences for Alzheimer's disease development. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 510, 317-327.	2.3	3
15	Metabolic Precursor of Cholesterol Causes Formation of Chained Aggregates of Liquid-Ordered Domains. Langmuir, 2016, 32, 1591-1600.	1.6	30
16	Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1424-1435.	1.4	20
17	Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes. Journal of Fluorescence, 2015, 25, 1037-1043.	1.3	3
18	Tuning of membrane electrostatic properties by single chain sphingolipids sphingosine and sphingosine-1-phosphate: The effect on bilayer dipole potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 181-186.	2.3	2

#	Article	IF	Citations
19	Lyso- and omega-3-containing phosphatidylcholines alter the bending elasticity of lipid membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 191-195.	2.3	7
20	Intake of Xylooligosaccharides Alters the Structural Organization of Liver Plasma Membrane Bilayer. Food Biophysics, 2014, 9, 138-144.	1.4	4
21	Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes. Chemico-Biological Interactions, 2014, 207, 74-80.	1.7	29
22	Antagonism and Synergy of Single Chain Sphingolipids Sphingosine and Sphingosine-1-phosphate toward Lipid Bilayer Properties. Consequences for Their Role as Cell Fate Regulators. Langmuir, 2014, 30, 13956-13963.	1.6	9
23	Lo/Ld phase coexistence modulation induced by GM1. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2105-2114.	1.4	33
24	Effect of <i>N</i> -Propyl Gallate on Lipid Peroxidation in Heterogenous Model Membranes. Biotechnology and Biotechnological Equipment, 2013, 27, 4145-4149.	0.5	1
25	Developing Cell-Scale Biomimetic Systems. Behavior Research Methods, 2013, 17, 167-213.	2.3	0
26	Effect of Inulin Intake on the Content and Susceptibility to Oxidative Damage of Cholesterol in Rat Liver Plasma Membranes. Comptes Rendus De L'Academie Bulgare Des Sciences, 2013, 66, .	0.1	0
27	Testosterone replacement therapy improves erythrocyte membrane lipid composition in hypogonadal men. Aging Male, 2012, 15, 173-179.	0.9	11
28	Fructooligosaccharide Intake Alters the Phospholipid and Fatty Acid Composition of Liver Plasma Membranes. Biotechnology and Biotechnological Equipment, 2012, 26, 2904-2909.	0.5	2
29	Segregative Clustering of Lo and Ld Membrane Microdomains Induced by Local pH Gradients in GM1-Containing Giant Vesicles: AÂLipid Model for Cellular Polarization. Langmuir, 2012, 28, 16327-16337.	1.6	13
30	Making a Tool of an Artifact: The Application of Photoinduced Lo Domains in Giant Unilamellar Vesicles to the Study of Lo/Ld Phase Spinodal Decomposition and Its Modulation by the Ganglioside GM1. Langmuir, $2011, 27, 15074-15082$.	1.6	19
31	The use of Light-Induced lo Domains in Giant Unilamellar Vesicles to Mimick raft Dynamics: Application to the Effect of the Ganglioside GM1. Biophysical Journal, 2011, 100, 499a.	0.2	0
32	The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2009-2018.	1.4	31
33	Structural organization of plasma membrane lipids isolated from cells cultured as a monolayer and in tissue-like conditions. Journal of Colloid and Interface Science, 2011, 359, 202-209.	5.0	3
34	Alterations in the content and physiological role of sphingomyelin in plasma membranes of cells cultured in three-dimensional matrix. Molecular and Cellular Biochemistry, 2010, 340, 215-222.	1.4	11
35	Effect of sphingosine on domain morphology in giant vesicles. Journal of Colloid and Interface Science, 2010, 350, 502-510.	5.0	23
36	Comparison of the liquid-ordered bilayer phases containing cholesterol or 7-dehydrocholesterol in modeling Smith-Lemli-Opitz syndrome. Journal of Lipid Research, 2010, 51, 1810-1822.	2.0	29

#	Article	IF	CITATIONS
37	Liquid–liquid immiscibility under non-equilibrium conditions in a model membrane: An X-ray synchrotron study. Colloids and Surfaces B: Biointerfaces, 2009, 74, 293-297.	2.5	6
38	Surface Properties and Behavior of Lipid Extracts from Plasma Membranes of Cells Cultured as Monolayer and in Tissue-Like Conditions. Cell Biochemistry and Biophysics, 2009, 54, 47-55.	0.9	5
39	Cell culturing in a three-dimensional matrix affects the localization and properties of plasma membrane cholesterol. Cell Biology International, 2009, 33, 1079-1086.	1.4	6
40	Membrane microdomains: Role of ceramides in the maintenance of their structure and functions. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 666-675.	1.4	39
41	Modification of membrane heterogeneity by antipsychotic drugs: An X-ray diffraction comparative study. Journal of Colloid and Interface Science, 2008, 320, 469-475.	5.0	33
42	The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: Competition between ceramide and cholesterol. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2727-2739.	1.4	44
43	Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles. Chemistry and Physics of Lipids, 2005, 136, 55-66.	1.5	106
44	Phospholipase A2 promotes raft budding and fission from giant liposomes. Chemistry and Physics of Lipids, 2004, 129, 53-62.	1.5	102