Joost P G Sluijter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181013/publications.pdf

Version: 2024-02-01

208 papers 13,015 citations

23879 60 h-index 105

g-index

212 all docs 212 docs citations

times ranked

212

19194 citing authors

#	Article	IF	CITATIONS
1	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	1.8	44
2	ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Molecular Therapy, 2022, 30, 400-414.	3.7	36
3	Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2101202.	3.9	77
4	Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2022, 9, 43.	0.8	5
5	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	1.8	30
6	Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. Journal of Controlled Release, 2022, 343, 207-216.	4.8	30
7	Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncology, The, 2022, 23, e129-e143.	5.1	36
8	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	1.1	16
9	Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Molecular Therapy - Methods and Clinical Development, 2022, 25, 3-16.	1.8	5
10	Extracellular vesicles enclosedâ€miRâ€421 suppresses air pollution (PM _{2.5})â€induced cardiac dysfunction via ACE2 signalling. Journal of Extracellular Vesicles, 2022, 11, e12222.	5.5	17
11	Elevated Serotonin and NT-proBNP Levels Predict and Detect Carcinoid Heart Disease in a Large Validation Study. Cancers, 2022, 14, 2361.	1.7	3
12	Clinical Phenotypes of HeartÂFailure With Preserved Ejection Fraction to Select Preclinical Animal Models. JACC Basic To Translational Science, 2022, 7, 844-857.	1.9	11
13	Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Frontiers in Pharmacology, 2022, 13, .	1.6	4
14	Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome, 2022, 10, .	4.9	35
15	The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis. Heart Failure Reviews, 2021, 26, 1515-1524.	1.7	36
16	Requirements for Proper Immunosuppressive Regimens to Limit Translational Failure of Cardiac Cell Therapy in Preclinical Large Animal Models. Journal of Cardiovascular Translational Research, 2021, 14, 88-99.	1.1	5
17	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	1.8	53
18	Minimally Invasive Ways of Determining Circadian Rhythms in Humans. Physiology, 2021, 36, 7-20.	1.6	9

#	Article	IF	CITATIONS
19	Cardiac circadian rhythms in time and space: The future is in 4D. Current Opinion in Pharmacology, 2021, 57, 49-59.	1.7	4
20	Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends in Molecular Medicine, 2021, 27, 248-262.	3.5	45
21	Current Perspectives on Inflammation in Cardiovascular Disease; from Biomarker to Therapy. Journal of Cardiovascular Translational Research, 2021, 14, 1-2.	1.1	4
22	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	1.1	9
23	Angiotensin II-induced muscle atrophy via PPARγ suppression is mediated by miR-29b. Molecular Therapy - Nucleic Acids, 2021, 23, 743-756.	2.3	18
24	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	0.5	24
25	miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a. Frontiers in Cardiovascular Medicine, 2021, 8, 592362.	1.1	16
26	Combined meta-analysis of preclinical cell therapy studies shows overlapping effect modifiers for multiple diseases. BMJ Open Science, 2021, 5, e100061.	0.8	1
27	Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 2021, 42, 2630-2642.	1.0	69
28	A Roadmap to Cardiac Tissueâ€Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. Advanced Materials, 2021, 33, 2008517.	11.1	4
29	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	1.8	26
30	Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles?. International Journal of Molecular Sciences, 2021, 22, 7831.	1.8	23
31	Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models. Frontiers in Pharmacology, 2021, 12, 702326.	1.6	5
32	Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation, 2021, 144, 382-392.	1.6	32
33	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	1.8	10
34	Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension, 2021, 78, 1541-1554.	1.3	25
35	Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. Journal of Cardiovascular Translational Research, 2021, 14, 63-74.	1.1	9
36	Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine, 2021, 74, 103713.	2.7	25

#	Article	IF	CITATIONS
37	Controlled delivery of gold nanoparticle-coupled miRNA therapeutics <i>via </i> an injectable self-healing hydrogel. Nanoscale, 2021, 13, 20451-20461.	2.8	15
38	Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Advanced Healthcare Materials, 2020, 9, e1900775.	3.9	24
39	miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovascular Research, 2020, 116, 1226-1236.	1.8	71
40	Repairing the heart: State-of the art delivery strategies for biological therapeutics. Advanced Drug Delivery Reviews, 2020, 160, 1-18.	6.6	16
41	Extracellular Vesicle-Associated Proteins in Tissue Repair. Trends in Cell Biology, 2020, 30, 990-1013.	3.6	91
42	The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics, 2020, 10, 6167-6181.	4.6	20
43	Cellular and Molecular Mechanism of Cardiac Regeneration: A Comparison of Newts, Zebrafish, and Mammals. Biomolecules, 2020, 10, 1204.	1.8	13
44	Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Frontiers in Immunology, 2020, 11, 599511.	2.2	60
45	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	1.8	34
46	Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1850-1862.	1.8	22
47	Loss of miR-132/212 Has No Long-Term Beneficial Effect on Cardiac Function After Permanent Coronary Occlusion in Mice. Frontiers in Physiology, 2020, 11, 590.	1.3	4
48	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	5.2	112
49	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	1.8	39
50	Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Frontiers in Cardiovascular Medicine, 2020, 7, 30.	1.1	23
51	Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells, 2020, 9, 1017.	1.8	12
52	Prognostic biomarker soluble ST2 exhibits diurnal variation in chronic heart failure patients. ESC Heart Failure, 2020, 7, 1224-1233.	1.4	20
53	Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Science Alliance, 2020, 3, e202000821.	1.3	26
54	Non-coding RNAs in Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2020, 1229, 163-180.	0.8	4

#	Article	IF	CITATIONS
55	Induced Pluripotent Stem Cells. , 2020, , 439-455.		O
56	Comparing Conventional Chemotherapy to Chronomodulated Chemotherapy for Cancer Treatment: Protocol for a Systematic Review. JMIR Research Protocols, 2020, 9, e18023.	0.5	6
57	Lymphocytic subsets play distinct roles in heart diseases. Theranostics, 2019, 9, 4030-4046.	4.6	17
58	Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16105-16110.	3.3	73
59	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	3.9	61
60	Polymeric siRNA gene delivery – transfection efficiency versus cytotoxicity. Journal of Controlled Release, 2019, 316, 263-291.	4.8	58
61	Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre―and endâ€stage heart failure. Journal of Cellular and Molecular Medicine, 2019, 23, 7505-7516.	1.6	26
62	Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. Molecules, 2019, 24, 181.	1.7	7
63	Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. European Journal of Heart Failure, 2019, 21, 272-285.	2.9	182
64	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	1.8	90
65	Drug Delivery with Extracellular Vesicles: From Imagination to Innovation. Accounts of Chemical Research, 2019, 52, 1761-1770.	7.6	203
66	Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2019, 6, 52.	1.1	27
67	Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nature Reviews Cardiology, 2019, 16, 437-447.	6.1	263
68	Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Medicine, 2019, 17, 42.	2.3	56
69	Biofabrication of Cell-Derived Nanovesicles: A Potential Alternative to Extracellular Vesicles for Regenerative Medicine. Cells, 2019, 8, 1509.	1.8	39
70	Potential of mesenchymal- and cardiac progenitor cells for therapeutic targeting of B-cells and antibody responses in end-stage heart failure. PLoS ONE, 2019, 14, e0227283.	1.1	9
71	Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. Journal of Cardiovascular Translational Research, 2019, 12, 5-17.	1.1	53
72	Lower retention after retrograde coronary venous infusion compared with intracoronary infusion of mesenchymal stromal cells in the infarcted porcine myocardium. BMJ Open Science, 2019, 3, e000006.	0.8	5

#	Article	IF	Citations
73	Follistatin-like 1 in Cardiovascular Disease and Inflammation. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1379-1389.	1.1	15
74	Title is missing!. , 2019, 14, e0227283.		0
75	Title is missing!. , 2019, 14, e0227283.		0
76	Title is missing!. , 2019, 14, e0227283.		0
77	Title is missing!. , 2019, 14, e0227283.		0
78	Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cellular and Molecular Life Sciences, 2018, 75, 3593-3607.	2.4	33
79	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	1.8	284
80	Inhibition of miR-223 reduces inflammation but not adverse cardiac remodelling after myocardial ischemia-reperfusion in vivo. Non-coding RNA Investigation, 2018, 2, 15-15.	0.6	3
81	Circular RNAs as Potential Theranostics in the Cardiovascular System. Molecular Therapy - Nucleic Acids, 2018, 13, 407-418.	2.3	50
82	Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovascular Research, 2018, 114, 1828-1842.	1.8	40
83	MMISH: Multicolor microRNA in situ hybridization for paraffin embedded samples. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00255.	2.1	11
84	Decellularized Extracellular Matrix Hydrogels as a Delivery Platform for MicroRNA and Extracellular Vesicle Therapeutics. Advanced Therapeutics, 2018, 1, 1800032.	1.6	26
85	Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review. Vascular Pharmacology, 2018, 111, 1-6.	1.0	5
86	Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials, 2018, 8, 296.	1.9	81
87	Melt Electrowriting Allows Tailored Microstructural and Mechanical Design of Scaffolds to Advance Functional Human Myocardial Tissue Formation. Advanced Functional Materials, 2018, 28, 1803151.	7.8	125
88	Intramyocardial stem cell injection: go(ne) with the flow. European Heart Journal, 2017, 38, ehw056.	1.0	48
89	<i>In vitro</i> 3D model and miRNA drug delivery to target calcific aortic valve disease. Clinical Science, 2017, 131, 181-195.	1.8	24
90	MicroRNAs. Circulation Research, 2017, 120, 5-7.	2.0	10

#	Article	IF	CITATIONS
91	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	3.9	85
92	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	1.8	114
93	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	3.9	25
94	Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq0 0 0 rgBT	Overlock :	10 Tf 50 62:
95	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	1.8	278
96	Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2061-2065.	1.7	268
97	Tissue Engineering: Melt Electrospinning Writing of Polyâ∈Hydroxymethylglycolideâ∈xi>coàefµâ∈Caprolactoneâ∈Based Scaffolds for Cardiac Tissue Engineering (Adv. Healthcare Mater. 18/2017). Advanced Healthcare Materials, 2017, 6, .	3.9	1
98	Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> â€Îµâ€Caprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700311.	3.9	144
99	ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. European Heart Journal, 2017, 38, 2392-2411.	1.0	118
100	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	1.8	11
101	SCA1 + Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions. Stem Cell Reports, 2017, 9, 762-769.	2.3	20
102	Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Research, 2017, 27, 2061-2071.	2.4	54
103	Complement 5a Receptor deficiency does not influence adverse cardiac remodeling after pressure-overload in mice. Scientific Reports, 2017, 7, 17045.	1.6	9
104	miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Experimental and Molecular Medicine, 2017, 49, e386-e386.	3.2	31
105	European and South Africa research collaboration. European Heart Journal, 2017, 38, 930-931.	1.0	0
106	miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 664-676.	4.6	174
107	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	1.0	133
108	Cardiac-released extracellular vesicles can activate endothelial cells. Annals of Translational Medicine, 2017, 5, 64-64.	0.7	11

#	Article	IF	CITATIONS
109	Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury. PLoS ONE, 2017, 12, e0173657.	1.1	7
110	Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics, 2016, 6, 2068-2083.	4.6	134
111	Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. Journal of Cardiovascular Translational Research, 2016, 9, 291-301.	1.1	59
112	Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the antiâ€tumour therapeutic approach with doxorubicin. Journal of Extracellular Vesicles, 2016, 5, 32538.	5.5	62
113	Isolation of Pig Bone Marrow-Derived Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 225-232.	0.4	11
114	Sepsis-associated cardiac dysfunction is controlled by small RNA molecules. Journal of Molecular and Cellular Cardiology, 2016, 97, 67-69.	0.9	11
115	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	1.0	210
116	Stem cell-based therapy: Improving myocardial cell delivery. Advanced Drug Delivery Reviews, 2016, 106, 104-115.	6.6	36
117	Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN. Advanced Healthcare Materials, 2016, 5, 2555-2565.	3.9	158
118	Responder Definition in Clinical Stem Cell Trials in Cardiology. Circulation Research, 2016, 119, 514-518.	2.0	8
119	Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells. Cell Transplantation, 2016, 25, 1653-1663.	1.2	58
120	Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium. Advanced Healthcare Materials, 2016, 5, 1071-1079.	3.9	42
121	Increased local delivery of antagomir therapeutics to the rodent myocardium using ultrasound and microbubbles. Journal of Controlled Release, 2016, 222, 18-31.	4.8	30
122	Cardiac Stem Cell Treatment in Myocardial Infarction. Circulation Research, 2016, 118, 1223-1232.	2.0	138
123	Cardiac Regeneration and microRNAs: Regulators of Pluripotency, Reprogramming, and Cardiovascular Lineage Commitment. Pancreatic Islet Biology, 2016, , 79-109.	0.1	0
124	Micro <scp>RNA</scp> â€132/212 family enhances arteriogenesis after hindlimbÂischaemia through modulation of the Rasâ€ <scp>MAPK</scp> pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 1994-2005.	1.6	56
125	Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 2015, 5, 13243.	1.6	135
126	Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial. PLoS ONE, 2015, 10, e0143953.	1.1	17

#	Article	IF	CITATIONS
127	Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice. Scientific Reports, 2015, 5, 8374.	1.6	64
128	Cardiac Allograft Vasculopathy: A Donor or Recipient Induced Pathology?. Journal of Cardiovascular Translational Research, 2015, 8, 106-116.	1.1	26
129	Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.	5 . 7	265
130	A snapshot of genetic and epigenetic basis of arrhythmia and heart failure. Frontiers in Genetics, 2015, 6, 74.	1.1	3
131	Exosomal MicroRNA Clusters Are Important for the Therapeutic Effect of Cardiac Progenitor Cells. Circulation Research, 2015, 116, 219-221.	2.0	28
132	Necrostatinâ€1 alleviates reperfusion injury following acute myocardial infarction in pigs. European Journal of Clinical Investigation, 2015, 45, 150-159.	1.7	70
133	Ultrasound and Microbubble-Induced Local Delivery of MicroRNA-Based Therapeutics. Ultrasound in Medicine and Biology, 2015, 41, 163-176.	0.7	18
134	Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation. Current Drug Targets, 2015, 16, 780-785.	1.0	8
135	MicroRNA Therapeutics for Cardiac Regeneration. Mini-Reviews in Medicinal Chemistry, 2015, 15, 441-451.	1.1	15
136	Wnt/ \hat{l}^2 -Catenin Signaling during Cardiac Development and Repair. Journal of Cardiovascular Development and Disease, 2014, 1, 98-110.	0.8	9
137	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	1.8	143
138	Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science, 2014, 127, 351-365.	1.8	60
139	A Fast pHâ€Switchable and Selfâ€Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium. Advanced Healthcare Materials, 2014, 3, 70-78.	3.9	261
140	Drug Delivery: A Fast pH-Switchable and Self-Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 69-69.	3.9	2
141	Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 2014, 508, 531-535.	13.7	377
142	Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart. Journal of Cardiovascular Translational Research, 2014, 7, 232-241.	1.1	93
143	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
144	Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 2014, 102, 302-311.	1.8	228

#	Article	IF	Citations
145	Layer-Specific Radiofrequency Ultrasound-Based Strain Analysis in a Porcine Model of Ischemic Cardiomyopathy Validated by a Geometric Model. Ultrasound in Medicine and Biology, 2014, 40, 378-388.	0.7	6
146	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	1.6	34
147	Concise Review: Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology. Stem Cells, 2013, 31, 2587-2598.	1.4	40
148	Circulating MicroRNAs as Novel Biomarkers for the Early Diagnosis of Acute Coronary Syndrome. Journal of Cardiovascular Translational Research, 2013, 6, 884-898.	1.1	48
149	Circulating MicroRNA Profiles for Detection of Peripheral Arterial Disease. Circulation: Cardiovascular Genetics, 2013, 6, 441-443.	5.1	3
150	Wnt \hat{l}^2 -catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development (Cambridge), 2013, 140, 4165-4176.	1.2	57
151	Concise Review: Heart Regeneration and the Role of Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 434-443.	1.6	69
152	Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2449-2458.	1.1	84
153	microRNA-1 enhances the angiogenic differentiation of human cardiomyocyte progenitor cells. Journal of Molecular Medicine, 2013, 91, 1001-1012.	1.7	33
154	Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. International Journal of Cardiology, 2013, 165, 410-422.	0.8	103
155	Post-transcriptional Regulation of α-1-Antichymotrypsin by MicroRNA-137 in Chronic Heart Failure and Mechanical Support. Circulation: Heart Failure, 2013, 6, 853-861.	1.6	25
156	Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2013, 98, 7-27.	1.8	209
157	Expanding Mouse Ventricular Cardiomyocytes Through GSKâ€3 Inhibition. Current Protocols in Cell Biology, 2013, 61, 23.9.1-23.9.10.	2.3	9
158	Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function. Cardiovascular Research, 2013, 99, 83-91.	1.8	15
159	MicroRNAs in Cardiovascular Regenerative Medicine: Directing Tissue Repair and Cellular Differentiation. ISRN Vascular Medicine, 2013, 2013, 1-16.	0.7	13
160	MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovascular Research, 2012, 93, 655-665.	1.8	132
161	Advanced measurement techniques of regional myocardial function to assess the effects of cardiac regenerative therapy in different models of ischaemic cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2012, 13, 808-818.	0.5	15
162	MicroRNA-204 is required for differentiation of human-derived cardiomyocyte progenitor cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 751-759.	0.9	52

#	Article	IF	CITATIONS
163	Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Molecular Medicine, 2012, 4, 1176-1185.	3.3	173
164	Human <i>versus</i> porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. Journal of Cellular and Molecular Medicine, 2012, 16, 1827-1839.	1.6	82
165	Human cardiomyocyte progenitor cells: a short history of nearly everything. Journal of Cellular and Molecular Medicine, 2012, 16, 1669-1673.	1.6	10
166	<scp>MiR</scp> â€155 inhibits cell migration of human cardiomyocyte progenitor cells (<scp>hCMPC</scp> s) <i>via</i> targeting of <scp>MMP</scp> â€16. Journal of Cellular and Molecular Medicine, 2012, 16, 2379-2386.	1.6	41
167	Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: a study on delivery efficiency. Journal of Cellular and Molecular Medicine, 2012, 16, 2768-2776.	1.6	50
168	Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Research in Cardiology, 2012, 107, 270.	2.5	277
169	Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012, 33, 1782-1790.	5.7	347
170	Sequential use of humanâ€derived medium supplements favours cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 2012, 16, 730-739.	1.6	3
171	Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovascular Research, 2011, 91, 649-658.	1.8	209
172	MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. Journal of Cellular and Molecular Medicine, 2011, 15, 1474-1482.	1.6	114
173	Non-surgical stem cell delivery strategies and in vivo cell tracking to injured myocardium. International Journal of Cardiovascular Imaging, 2011, 27, 367-383.	0.7	19
174	MicroRNA-100 Regulates Neovascularization by Suppression of Mammalian Target of Rapamycin in Endothelial and Vascular Smooth Muscle Cells. Circulation, 2011, 123, 999-1009.	1.6	178
175	Decreased Mechanical Properties of Heart Valve Tissue Constructs Cultured in Platelet Lysate as Compared to Fetal Bovine Serum. Tissue Engineering - Part C: Methods, 2011, 17, 607-617.	1.1	10
176	Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics. Cardiovascular Research, 2011, 89, 680-688.	1.8	74
177	Environmental regulation of valvulogenesis: implications for tissue engineering. European Journal of Cardio-thoracic Surgery, 2011, 39, 8-17.	0.6	21
178	Active Wnt signaling in response to cardiac injury. Basic Research in Cardiology, 2010, 105, 631-641.	2.5	97
179	Hyperpolarization Induces Differentiation in Human Cardiomyocyte Progenitor Cells. Stem Cell Reviews and Reports, 2010, 6, 178-185.	5.6	43
180	Foetal and adult cardiomyocyte progenitor cells have different developmental potential. Journal of Cellular and Molecular Medicine, 2010, 14, 861-870.	1.6	29

#	Article	IF	Citations
181	Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	1.6	30
182	Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	1.6	194
183	MicroRNA-1 and -499 Regulate Differentiation and Proliferation in Human-Derived Cardiomyocyte Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 859-868.	1.1	302
184	Platelet-Lysate as an Autologous Alternative for Fetal Bovine Serum in Cardiovascular Tissue Engineering - Part A, 2010, 16, 1317-1327.	1.6	11
185	Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovascular Research, 2010, 85, 494-502.	1.8	35
186	Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. Journal of Molecular and Cellular Cardiology, 2010, 48, 254-260.	0.9	21
187	Cell Therapy for Myocardial Regeneration. Current Molecular Medicine, 2009, 9, 287-298.	0.6	18
188	Increased Expression of the Transforming Growth Factor- \hat{l}^2 Signaling Pathway, Endoglin, and Early Growth Response-1 in Stable Plaques. Stroke, 2009, 40, 439-447.	1.0	50
189	The Potential of Modulating Small RNA Activity In Vivo. Mini-Reviews in Medicinal Chemistry, 2009, 9, 235-248.	1.1	14
190	Stem Cells from In- or Outside of the Heart: Isolation, Characterization, and Potential for Myocardial Tissue Regeneration. Pediatric Cardiology, 2009, 30, 699-709.	0.6	13
191	Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 2009, 4, 232-243.	5.5	276
192	TGF- \hat{l}^21 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 2008, 1, 138-149.	0.3	214
193	Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis, 2008, 197, 95-104.	0.4	116
194	Balance between Angiopoietin-1 and Angiopoietin-2 Is in Favor of Angiopoietin-2 in Atherosclerotic Plaques with High Microvessel Density. Journal of Vascular Research, 2008, 45, 244-250.	0.6	84
195	Toll-Like Receptor 4 Mediates Maladaptive Left Ventricular Remodeling and Impairs Cardiac Function After Myocardial Infarction. Circulation Research, 2008, 102, 257-264.	2.0	298
196	Caveolin-1 Influences Vascular Protease Activity and Is a Potential Stabilizing Factor in Human Atherosclerotic Disease. PLoS ONE, 2008, 3, e2612.	1.1	36
197	Isolation and expansion of resident cardiac progenitor cells. Expert Review of Cardiovascular Therapy, 2007, 5, 33-43.	0.6	40
198	Cyclooxygenase-2 Inhibition Increases Mortality, Enhances Left Ventricular Remodeling, and Impairs Systolic Function After Myocardial Infarction in the Pig. Circulation, 2007, 115, 326-332.	1.6	113

#	Article	IF	CITATIONS
199	Vascular remodeling and protease inhibition—bench to bedside. Cardiovascular Research, 2006, 69, 595-603.	1.8	93
200	Matrix Metalloproteinase 2 Is Associated With Stable and Matrix Metalloproteinases 8 and 9 With Vulnerable Carotid Atherosclerotic Lesions. Stroke, 2006, 37, 235-239.	1.0	179
201	Involvement of furin-like proprotein convertases in the arterial response to injury. Cardiovascular Research, 2005, 68, 136-143.	1.8	29
202	Modulation of Collagen Turnover in Cardiovascular Disease. Current Pharmaceutical Design, 2005, 11, 2501-2514.	0.9	50
203	Increase in Collagen Turnover But Not in Collagen Fiber Content Is Associated with Flow-Induced Arterial Remodeling. Journal of Vascular Research, 2004, 41, 546-555.	0.6	23
204	Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury. Cardiovascular Research, 2004, 61, 186-195.	1.8	33
205	Increased arterial expression of a glycosylated haptoglobin isoform after balloon dilation. Cardiovascular Research, 2003, 58, 689-695.	1.8	18
206	In Vivo Evidence for a Role of Toll-Like Receptor 4 in the Development of Intimal Lesions. Circulation, 2002, 106, 1985-1990.	1.6	223
207	Furin and membrane type-1 metalloproteinase mRNA levels and activation of metalloproteinase-2 are associated with arterial remodeling. FEBS Letters, 2001, 501, 37-41.	1.3	39
208	Induction of cardiomyocyte proliferation, a new way forward for true myocardial regeneration?. Non-coding RNA Investigation, 0, 2, 46-46.	0.6	0