Joost P G Sluijter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8181013/publications.pdf Version: 2024-02-01

LOOST P.C. SLUUTER

#	Article	IF	CITATIONS
1	Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature, 2014, 508, 531-535.	27.8	377
2	Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012, 33, 1782-1790.	11.4	347
3	MicroRNA-1 and -499 Regulate Differentiation and Proliferation in Human-Derived Cardiomyocyte Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 859-868.	2.4	302
4	Toll-Like Receptor 4 Mediates Maladaptive Left Ventricular Remodeling and Impairs Cardiac Function After Myocardial Infarction. Circulation Research, 2008, 102, 257-264.	4.5	298
5	Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2018, 114, 19-34.	3.8	284
6	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	3.8	278
7	Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Research in Cardiology, 2012, 107, 270.	5.9	277
8	Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nature Protocols, 2009, 4, 232-243.	12.0	276
9	Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2061-2065.	3.3	268
10	Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.	11.4	265
11	Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nature Reviews Cardiology, 2019, 16, 437-447.	13.7	263
12	A Fast pHâ€Switchable and Selfâ€Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium. Advanced Healthcare Materials, 2014, 3, 70-78.	7.6	261
13	Microvesicles and exosomes for intracardiac communication. Cardiovascular Research, 2014, 102, 302-311.	3.8	228
14	In Vivo Evidence for a Role of Toll-Like Receptor 4 in the Development of Intimal Lesions. Circulation, 2002, 106, 1985-1990.	1.6	223
15	TGF-β1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Research, 2008, 1, 138-149.	0.7	214
16	Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. European Heart Journal, 2016, 37, 1789-1798.	2.2	210
17	Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovascular Research, 2011, 91, 649-658.	3.8	209
18	Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovascular Research, 2013, 98, 7-27.	3.8	209

#	Article	IF	CITATIONS
19	Drug Delivery with Extracellular Vesicles: From Imagination to Innovation. Accounts of Chemical Research, 2019, 52, 1761-1770.	15.6	203
20	Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	3.6	194
21	Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. European Journal of Heart Failure, 2019, 21, 272-285.	7.1	182
22	Matrix Metalloproteinase 2 Is Associated With Stable and Matrix Metalloproteinases 8 and 9 With Vulnerable Carotid Atherosclerotic Lesions. Stroke, 2006, 37, 235-239.	2.0	179
23	MicroRNA-100 Regulates Neovascularization by Suppression of Mammalian Target of Rapamycin in Endothelial and Vascular Smooth Muscle Cells. Circulation, 2011, 123, 999-1009.	1.6	178
24	miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 664-676.	10.0	174
25	Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Molecular Medicine, 2012, 4, 1176-1185.	6.9	173
26	Exosomes from Cardiomyocyte Progenitor Cells and Mesenchymal Stem Cells Stimulate Angiogenesis Via EMMPRIN. Advanced Healthcare Materials, 2016, 5, 2555-2565.	7.6	158
27	Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> â€Îµâ€Caprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700311.	7.6	144
28	ESC Working Group Cellular Biology of the Heart: Position Paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovascular Research, 2014, 104, 399-411.	3.8	143
29	Cardiac Stem Cell Treatment in Myocardial Infarction. Circulation Research, 2016, 118, 1223-1232.	4.5	138
30	Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 2015, 5, 13243.	3.3	135
31	Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics, 2016, 6, 2068-2083.	10.0	134
32	Global position paper on cardiovascular regenerative medicine. European Heart Journal, 2017, 38, 2532-2546.	2.2	133
33	MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. Cardiovascular Research, 2012, 93, 655-665.	3.8	132
34	Melt Electrowriting Allows Tailored Microstructural and Mechanical Design of Scaffolds to Advance Functional Human Myocardial Tissue Formation. Advanced Functional Materials, 2018, 28, 1803151.	14.9	125
35	ESC Joint Working Groups on Cardiovascular Surgery and the Cellular Biology of the Heart Position Paper: Peri-operative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. European Heart Journal, 2017, 38, 2392-2411.	2.2	118
36	Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis, 2008, 197, 95-104.	0.8	116

#	Article	IF	CITATIONS
37	MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. Journal of Cellular and Molecular Medicine, 2011, 15, 1474-1482.	3.6	114
38	Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 725-736.	3.8	114
39	Cyclooxygenase-2 Inhibition Increases Mortality, Enhances Left Ventricular Remodeling, and Impairs Systolic Function After Myocardial Infarction in the Pig. Circulation, 2007, 115, 326-332.	1.6	113
40	Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes. Cell Stem Cell, 2020, 27, 50-63.e5.	11.1	112
41	Targeting cell death in the reperfused heart: Pharmacological approaches for cardioprotection. International Journal of Cardiology, 2013, 165, 410-422.	1.7	103
42	Active Wnt signaling in response to cardiac injury. Basic Research in Cardiology, 2010, 105, 631-641.	5.9	97
43	Vascular remodeling and protease inhibition—bench to bedside. Cardiovascular Research, 2006, 69, 595-603.	3.8	93
44	Sustained Delivery of Insulin-Like Growth Factor-1/Hepatocyte Growth Factor Stimulates Endogenous Cardiac Repair in the Chronic Infarcted Pig Heart. Journal of Cardiovascular Translational Research, 2014, 7, 232-241.	2.4	93
45	Extracellular Vesicle-Associated Proteins in Tissue Repair. Trends in Cell Biology, 2020, 30, 990-1013.	7.9	91
46	ESC Working Group on Cellular Biology of the Heart: position paper for Cardiovascular Research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovascular Research, 2019, 115, 488-500.	3.8	90
47	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	7.6	85
48	Balance between Angiopoietin-1 and Angiopoietin-2 Is in Favor of Angiopoietin-2 in Atherosclerotic Plaques with High Microvessel Density. Journal of Vascular Research, 2008, 45, 244-250.	1.4	84
49	Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2449-2458.	2.4	84
50	Human <i>versus</i> porcine mesenchymal stromal cells: phenotype, differentiation potential, immunomodulation and cardiac improvement after transplantation. Journal of Cellular and Molecular Medicine, 2012, 16, 1827-1839.	3.6	82
51	Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics. Nanomaterials, 2018, 8, 296.	4.1	81
52	Functional siRNA Delivery by Extracellular Vesicle–Liposome Hybrid Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2101202.	7.6	77
53	Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics. Cardiovascular Research, 2011, 89, 680-688.	3.8	74
54	Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16105-16110.	7.1	73

#	Article	IF	CITATIONS
55	miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovascular Research, 2020, 116, 1226-1236.	3.8	71
56	Necrostatinâ€1 alleviates reperfusion injury following acute myocardial infarction in pigs. European Journal of Clinical Investigation, 2015, 45, 150-159.	3.4	70
57	Concise Review: Heart Regeneration and the Role of Cardiac Stem Cells. Stem Cells Translational Medicine, 2013, 2, 434-443.	3.3	69
58	Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal, 2021, 42, 2630-2642.	2.2	69
59	Novel therapeutic strategies for cardioprotection. , 2014, 144, 60-70.		64
60	Traditional Chinese Medication Qiliqiangxin attenuates cardiac remodeling after acute myocardial infarction in mice. Scientific Reports, 2015, 5, 8374.	3.3	64
61	Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the antiâ€ŧumour therapeutic approach with doxorubicin. Journal of Extracellular Vesicles, 2016, 5, 32538.	12.2	62
62	Injectable Supramolecular Ureidopyrimidinone Hydrogels Provide Sustained Release of Extracellular Vesicle Therapeutics. Advanced Healthcare Materials, 2019, 8, e1900847.	7.6	61
63	Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science, 2014, 127, 351-365.	4.3	60
64	Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Frontiers in Immunology, 2020, 11, 599511.	4.8	60
65	Circulating Extracellular Vesicles Contain miRNAs and are Released as Early Biomarkers for Cardiac Injury. Journal of Cardiovascular Translational Research, 2016, 9, 291-301.	2.4	59
66	Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells. Cell Transplantation, 2016, 25, 1653-1663.	2.5	58
67	Polymeric siRNA gene delivery – transfection efficiency versus cytotoxicity. Journal of Controlled Release, 2019, 316, 263-291.	9.9	58
68	Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development (Cambridge), 2013, 140, 4165-4176.	2.5	57
69	Micro <scp>RNA</scp> â€132/212 family enhances arteriogenesis after hindlimbÂischaemia through modulation of the Rasâ€ <scp>MAPK</scp> pathway. Journal of Cellular and Molecular Medicine, 2015, 19, 1994-2005.	3.6	56
70	Cathelicidin-related antimicrobial peptide protects against myocardial ischemia/reperfusion injury. BMC Medicine, 2019, 17, 42.	5.5	56
71	Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing. Genome Research, 2017, 27, 2061-2071.	5.5	54
72	Cardiac Progenitor Cell–Derived Extracellular Vesicles Reduce Infarct Size and Associate with Increased Cardiovascular Cell Proliferation. Journal of Cardiovascular Translational Research, 2019, 12, 5-17.	2.4	53

#	Article	IF	CITATIONS
73	Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 367-385.	3.8	53
74	MicroRNA-204 is required for differentiation of human-derived cardiomyocyte progenitor cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 751-759.	1.9	52
75	Modulation of Collagen Turnover in Cardiovascular Disease. Current Pharmaceutical Design, 2005, 11, 2501-2514.	1.9	50
76	Increased Expression of the Transforming Growth Factor-Î ² Signaling Pathway, Endoglin, and Early Growth Response-1 in Stable Plaques. Stroke, 2009, 40, 439-447.	2.0	50
77	Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: a study on delivery efficiency. Journal of Cellular and Molecular Medicine, 2012, 16, 2768-2776.	3.6	50
78	Circular RNAs as Potential Theranostics in the Cardiovascular System. Molecular Therapy - Nucleic Acids, 2018, 13, 407-418.	5.1	50
79	Circulating MicroRNAs as Novel Biomarkers for the Early Diagnosis of Acute Coronary Syndrome. Journal of Cardiovascular Translational Research, 2013, 6, 884-898.	2.4	48
80	Intramyocardial stem cell injection: go(ne) with the flow. European Heart Journal, 2017, 38, ehw056.	2.2	48
81	Intercellular Communication in the Heart: Therapeutic Opportunities for Cardiac Ischemia. Trends in Molecular Medicine, 2021, 27, 248-262.	6.7	45
82	Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovascular Research, 2023, 119, 45-63.	3.8	44
83	Hyperpolarization Induces Differentiation in Human Cardiomyocyte Progenitor Cells. Stem Cell Reviews and Reports, 2010, 6, 178-185.	5.6	43
84	Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium. Advanced Healthcare Materials, 2016, 5, 1071-1079.	7.6	42
85	<scp>MiR</scp> â€155 inhibits cell migration of human cardiomyocyte progenitor cells (<scp>hCMPC</scp> s) <i>via</i> targeting of <scp>MMP</scp> â€16. Journal of Cellular and Molecular Medicine, 2012, 16, 2379-2386.	3.6	41
86	Isolation and expansion of resident cardiac progenitor cells. Expert Review of Cardiovascular Therapy, 2007, 5, 33-43.	1.5	40
87	Concise Review: Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology. Stem Cells, 2013, 31, 2587-2598.	3.2	40
88	Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovascular Research, 2018, 114, 1828-1842.	3.8	40
89	Furin and membrane type \hat{e} metalloproteinase mRNA levels and activation of metalloproteinase \hat{e} are associated with arterial remodeling. FEBS Letters, 2001, 501, 37-41.	2.8	39
90	Biofabrication of Cell-Derived Nanovesicles: A Potential Alternative to Extracellular Vesicles for Regenerative Medicine. Cells, 2019, 8, 1509.	4.1	39

#	Article	IF	CITATIONS
91	Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovascular Research, 2020, 116, 1805-1819.	3.8	39
92	Stem cell-based therapy: Improving myocardial cell delivery. Advanced Drug Delivery Reviews, 2016, 106, 104-115.	13.7	36
93	The transverse aortic constriction heart failure animal model: a systematic review and meta-analysis. Heart Failure Reviews, 2021, 26, 1515-1524.	3.9	36
94	ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity. Molecular Therapy, 2022, 30, 400-414.	8.2	36
95	Caveolin-1 Influences Vascular Protease Activity and Is a Potential Stabilizing Factor in Human Atherosclerotic Disease. PLoS ONE, 2008, 3, e2612.	2.5	36
96	Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncology, The, 2022, 23, e129-e143.	10.7	36
97	Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovascular Research, 2010, 85, 494-502.	3.8	35
98	Gut microbiome mediates the protective effects of exercise after myocardial infarction. Microbiome, 2022, 10, .	11.1	35
99	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	3.6	34
100	Cardiomyocyte ageing and cardioprotection: consensus document from the ESC working groups cell biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1835-1849.	3.8	34
101	Increased collagen turnover is only partly associated with collagen fiber deposition in the arterial response to injury. Cardiovascular Research, 2004, 61, 186-195.	3.8	33
102	microRNA-1 enhances the angiogenic differentiation of human cardiomyocyte progenitor cells. Journal of Molecular Medicine, 2013, 91, 1001-1012.	3.9	33
103	Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cellular and Molecular Life Sciences, 2018, 75, 3593-3607.	5.4	33
104	Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation, 2021, 144, 382-392.	1.6	32
105	miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1. Experimental and Molecular Medicine, 2017, 49, e386-e386.	7.7	31
106	Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	3.6	30
107	Increased local delivery of antagomir therapeutics to the rodent myocardium using ultrasound and microbubbles. Journal of Controlled Release, 2016, 222, 18-31.	9.9	30
108	Animal models and animal-free innovations for cardiovascular research: current status and routes to be explored. Consensus document of the ESC Working Group on Myocardial Function and the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2022, 118, 3016-3051.	3.8	30

#	Article	IF	CITATIONS
109	Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. Journal of Controlled Release, 2022, 343, 207-216.	9.9	30
110	Involvement of furin-like proprotein convertases in the arterial response to injury. Cardiovascular Research, 2005, 68, 136-143.	3.8	29
111	Foetal and adult cardiomyocyte progenitor cells have different developmental potential. Journal of Cellular and Molecular Medicine, 2010, 14, 861-870.	3.6	29
112	Exosomal MicroRNA Clusters Are Important for the Therapeutic Effect of Cardiac Progenitor Cells. Circulation Research, 2015, 116, 219-221.	4.5	28
113	Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2019, 6, 52.	2.4	27
114	Cardiac Allograft Vasculopathy: A Donor or Recipient Induced Pathology?. Journal of Cardiovascular Translational Research, 2015, 8, 106-116.	2.4	26
115	Decellularized Extracellular Matrix Hydrogels as a Delivery Platform for MicroRNA and Extracellular Vesicle Therapeutics. Advanced Therapeutics, 2018, 1, 1800032.	3.2	26
116	Increased circulating IgG levels, myocardial immune cells and IgG deposits support a role for an immune response in pre―and endâ€stage heart failure. Journal of Cellular and Molecular Medicine, 2019, 23, 7505-7516.	3.6	26
117	COVID-19-related cardiac complications from clinical evidences to basic mechanisms: opinion paper of the ESC Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2021, 117, 2148-2160.	3.8	26
118	Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Science Alliance, 2020, 3, e202000821.	2.8	26
119	Post-transcriptional Regulation of α-1-Antichymotrypsin by MicroRNA-137 in Chronic Heart Failure and Mechanical Support. Circulation: Heart Failure, 2013, 6, 853-861.	3.9	25
120	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	7.6	25
121	Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension, 2021, 78, 1541-1554.	2.7	25
122	Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine, 2021, 74, 103713.	6.1	25
123	<i>In vitro</i> 3D model and miRNA drug delivery to target calcific aortic valve disease. Clinical Science, 2017, 131, 181-195.	4.3	24
124	Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step. Advanced Healthcare Materials, 2020, 9, e1900775.	7.6	24
125	Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocytes. STAR Protocols, 2021, 2, 100334.	1.2	24
126	Increase in Collagen Turnover But Not in Collagen Fiber Content Is Associated with Flow-Induced Arterial Remodeling. Journal of Vascular Research, 2004, 41, 546-555.	1.4	23

#	Article	IF	CITATIONS
127	Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Frontiers in Cardiovascular Medicine, 2020, 7, 30.	2.4	23
128	Targeting Inflammation after Myocardial Infarction: A Therapeutic Opportunity for Extracellular Vesicles?. International Journal of Molecular Sciences, 2021, 22, 7831.	4.1	23
129	Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovascular Research, 2020, 116, 1850-1862.	3.8	22
130	Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. Journal of Molecular and Cellular Cardiology, 2010, 48, 254-260.	1.9	21
131	Environmental regulation of valvulogenesis: implications for tissue engineering. European Journal of Cardio-thoracic Surgery, 2011, 39, 8-17.	1.4	21
132	SCA1 + Cells from the Heart Possess a Molecular Circadian Clock and Display Circadian Oscillations in Cellular Functions. Stem Cell Reports, 2017, 9, 762-769.	4.8	20
133	The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics, 2020, 10, 6167-6181.	10.0	20
134	Prognostic biomarker soluble ST2 exhibits diurnal variation in chronic heart failure patients. ESC Heart Failure, 2020, 7, 1224-1233.	3.1	20
135	Non-surgical stem cell delivery strategies and in vivo cell tracking to injured myocardium. International Journal of Cardiovascular Imaging, 2011, 27, 367-383.	1.5	19
136	Increased arterial expression of a glycosylated haptoglobin isoform after balloon dilation. Cardiovascular Research, 2003, 58, 689-695.	3.8	18
137	Cell Therapy for Myocardial Regeneration. Current Molecular Medicine, 2009, 9, 287-298.	1.3	18
138	Ultrasound and Microbubble-Induced Local Delivery of MicroRNA-Based Therapeutics. Ultrasound in Medicine and Biology, 2015, 41, 163-176.	1.5	18
139	Angiotensin II-induced muscle atrophy via PPARγ suppression is mediated by miR-29b. Molecular Therapy - Nucleic Acids, 2021, 23, 743-756.	5.1	18
140	Xenotransplantation of Human Cardiomyocyte Progenitor Cells Does Not Improve Cardiac Function in a Porcine Model of Chronic Ischemic Heart Failure. Results from a Randomized, Blinded, Placebo Controlled Trial. PLoS ONE, 2015, 10, e0143953.	2.5	17
141	Lymphocytic subsets play distinct roles in heart diseases. Theranostics, 2019, 9, 4030-4046.	10.0	17
142	Extracellular vesicles enclosedâ€miRâ€421 suppresses air pollution (PM _{2.5})â€induced cardiac dysfunction via ACE2 signalling. Journal of Extracellular Vesicles, 2022, 11, e12222.	12.2	17
143	Repairing the heart: State-of the art delivery strategies for biological therapeutics. Advanced Drug Delivery Reviews, 2020, 160, 1-18.	13.7	16
144	miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a. Frontiers in Cardiovascular Medicine, 2021, 8, 592362.	2.4	16

#	Article	IF	CITATIONS
145	Pirfenidone Has Anti-fibrotic Effects in a Tissue-Engineered Model of Human Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 854314.	2.4	16
146	Advanced measurement techniques of regional myocardial function to assess the effects of cardiac regenerative therapy in different models of ischaemic cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2012, 13, 808-818.	1.2	15
147	Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function. Cardiovascular Research, 2013, 99, 83-91.	3.8	15
148	MicroRNA Therapeutics for Cardiac Regeneration. Mini-Reviews in Medicinal Chemistry, 2015, 15, 441-451.	2.4	15
149	Follistatin-like 1 in Cardiovascular Disease and Inflammation. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1379-1389.	2.4	15
150	Controlled delivery of gold nanoparticle-coupled miRNA therapeutics <i>via</i> an injectable self-healing hydrogel. Nanoscale, 2021, 13, 20451-20461.	5.6	15
151	The Potential of Modulating Small RNA Activity In Vivo. Mini-Reviews in Medicinal Chemistry, 2009, 9, 235-248.	2.4	14
152	Stem Cells from In- or Outside of the Heart: Isolation, Characterization, and Potential for Myocardial Tissue Regeneration. Pediatric Cardiology, 2009, 30, 699-709.	1.3	13
153	MicroRNAs in Cardiovascular Regenerative Medicine: Directing Tissue Repair and Cellular Differentiation. ISRN Vascular Medicine, 2013, 2013, 1-16.	0.7	13
154	Cellular and Molecular Mechanism of Cardiac Regeneration: A Comparison of Newts, Zebrafish, and Mammals. Biomolecules, 2020, 10, 1204.	4.0	13
155	Control of Angiogenesis via a VHL/miR-212/132 Axis. Cells, 2020, 9, 1017.	4.1	12
156	Platelet-Lysate as an Autologous Alternative for Fetal Bovine Serum in Cardiovascular Tissue Engineering. Tissue Engineering - Part A, 2010, 16, 1317-1327.	3.1	11
157	Isolation of Pig Bone Marrow-Derived Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 225-232.	0.9	11
158	Sepsis-associated cardiac dysfunction is controlled by small RNA molecules. Journal of Molecular and Cellular Cardiology, 2016, 97, 67-69.	1.9	11
159	Melatonin as a cardioprotective therapy following ST-segment elevation myocardial infarction: is it really promising? Reply. Cardiovascular Research, 2017, 113, 1418-1419.	3.8	11
160	Cardiac-released extracellular vesicles can activate endothelial cells. Annals of Translational Medicine, 2017, 5, 64-64.	1.7	11
161	MMISH: Multicolor microRNA in situ hybridization for paraffin embedded samples. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00255.	4.4	11
162	Clinical Phenotypes of HeartÂFailure With Preserved Ejection Fraction to Select Preclinical Animal Models. JACC Basic To Translational Science, 2022, 7, 844-857.	4.1	11

#	Article	IF	CITATIONS
163	Decreased Mechanical Properties of Heart Valve Tissue Constructs Cultured in Platelet Lysate as Compared to Fetal Bovine Serum. Tissue Engineering - Part C: Methods, 2011, 17, 607-617.	2.1	10
164	Human cardiomyocyte progenitor cells: a short history of nearly everything. Journal of Cellular and Molecular Medicine, 2012, 16, 1669-1673.	3.6	10
165	MicroRNAs. Circulation Research, 2017, 120, 5-7.	4.5	10
166	Circadian rhythms in ischaemic heart disease: key aspects for preclinical and translational research: position paper of the ESC working group on cellular biology of the heart. Cardiovascular Research, 2021, , .	3.8	10
167	Expanding Mouse Ventricular Cardiomyocytes Through GSKâ€3 Inhibition. Current Protocols in Cell Biology, 2013, 61, 23.9.1-23.9.10.	2.3	9
168	Wnt/β-Catenin Signaling during Cardiac Development and Repair. Journal of Cardiovascular Development and Disease, 2014, 1, 98-110.	1.6	9
169	Complement 5a Receptor deficiency does not influence adverse cardiac remodeling after pressure-overload in mice. Scientific Reports, 2017, 7, 17045.	3.3	9
170	Potential of mesenchymal- and cardiac progenitor cells for therapeutic targeting of B-cells and antibody responses in end-stage heart failure. PLoS ONE, 2019, 14, e0227283.	2.5	9
171	Minimally Invasive Ways of Determining Circadian Rhythms in Humans. Physiology, 2021, 36, 7-20.	3.1	9
172	Advanced <i>In Vitro</i> Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Engineering - Part C: Methods, 2021, 27, 100-114.	2.1	9
173	Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. Journal of Cardiovascular Translational Research, 2021, 14, 63-74.	2.4	9
174	Responder Definition in Clinical Stem Cell Trials in Cardiology. Circulation Research, 2016, 119, 514-518.	4.5	8
175	Stem Cell Aging and Age-Related Cardiovascular Disease: Perspectives of Treatment by Ex-vivo Stem Cell Rejuvenation. Current Drug Targets, 2015, 16, 780-785.	2.1	8
176	Cardiomyocyte Progenitor Cells as a Functional Gene Delivery Vehicle for Long-Term Biological Pacing. Molecules, 2019, 24, 181.	3.8	7
177	Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury. PLoS ONE, 2017, 12, e0173657.	2.5	7
178	Layer-Specific Radiofrequency Ultrasound-Based Strain Analysis in a Porcine Model of Ischemic Cardiomyopathy Validated by a Geometric Model. Ultrasound in Medicine and Biology, 2014, 40, 378-388.	1.5	6
179	Comparing Conventional Chemotherapy to Chronomodulated Chemotherapy for Cancer Treatment: Protocol for a Systematic Review. JMIR Research Protocols, 2020, 9, e18023.	1.0	6
180	Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review. Vascular Pharmacology, 2018, 111, 1-6.	2.1	5

#	Article	IF	CITATIONS
181	Requirements for Proper Immunosuppressive Regimens to Limit Translational Failure of Cardiac Cell Therapy in Preclinical Large Animal Models. Journal of Cardiovascular Translational Research, 2021, 14, 88-99.	2.4	5
182	Neutral Effects of Combined Treatment With GLP-1R Agonist Exenatide and MR Antagonist Potassium Canrenoate on Cardiac Function in Porcine and Murine Chronic Heart Failure Models. Frontiers in Pharmacology, 2021, 12, 702326.	3.5	5
183	Lower retention after retrograde coronary venous infusion compared with intracoronary infusion of mesenchymal stromal cells in the infarcted porcine myocardium. BMJ Open Science, 2019, 3, e000006.	1.7	5
184	Sarcomere Disassembly and Transfection Efficiency in Proliferating Human iPSC-Derived Cardiomyocytes. Journal of Cardiovascular Development and Disease, 2022, 9, 43.	1.6	5
185	Follistatin-like 1 promotes proliferation of matured human hypoxic iPSC-cardiomyocytes and is secreted by cardiac fibroblasts. Molecular Therapy - Methods and Clinical Development, 2022, 25, 3-16.	4.1	5
186	Loss of miR-132/212 Has No Long-Term Beneficial Effect on Cardiac Function After Permanent Coronary Occlusion in Mice. Frontiers in Physiology, 2020, 11, 590.	2.8	4
187	Cardiac circadian rhythms in time and space: The future is in 4D. Current Opinion in Pharmacology, 2021, 57, 49-59.	3.5	4
188	Current Perspectives on Inflammation in Cardiovascular Disease; from Biomarker to Therapy. Journal of Cardiovascular Translational Research, 2021, 14, 1-2.	2.4	4
189	A Roadmap to Cardiac Tissueâ€Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. Advanced Materials, 2021, 33, 2008517.	21.0	4
190	Non-coding RNAs in Cardiac Regeneration. Advances in Experimental Medicine and Biology, 2020, 1229, 163-180.	1.6	4
191	Circadian Dependence of the Acute Immune Response to Myocardial Infarction. Frontiers in Pharmacology, 2022, 13, .	3.5	4
192	Sequential use of humanâ€derived medium supplements favours cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 2012, 16, 730-739.	3.6	3
193	Circulating MicroRNA Profiles for Detection of Peripheral Arterial Disease. Circulation: Cardiovascular Genetics, 2013, 6, 441-443.	5.1	3
194	A snapshot of genetic and epigenetic basis of arrhythmia and heart failure. Frontiers in Genetics, 2015, 6, 74.	2.3	3
195	Inhibition of miR-223 reduces inflammation but not adverse cardiac remodelling after myocardial ischemia-reperfusion in vivo. Non-coding RNA Investigation, 2018, 2, 15-15.	0.6	3
196	Elevated Serotonin and NT-proBNP Levels Predict and Detect Carcinoid Heart Disease in a Large Validation Study. Cancers, 2022, 14, 2361.	3.7	3
197	Drug Delivery: A Fast pH-Switchable and Self-Healing Supramolecular Hydrogel Carrier for Guided, Local Catheter Injection in the Infarcted Myocardium (Adv. Healthcare Mater. 1/2014). Advanced Healthcare Materials, 2014, 3, 69-69.	7.6	2
198	Tissue Engineering: Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> â€Îµâ€€aprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering (Adv. Healthcare Mater. 18/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	1

#	Article	IF	CITATIONS
199	Combined meta-analysis of preclinical cell therapy studies shows overlapping effect modifiers for multiple diseases. BMJ Open Science, 2021, 5, e100061.	1.7	1
200	Cardiac Regeneration and microRNAs: Regulators of Pluripotency, Reprogramming, and Cardiovascular Lineage Commitment. Pancreatic Islet Biology, 2016, , 79-109.	0.3	0
201	Tissue Engineering: Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling (Adv.) Tj ETQq1 1 0.7843	914 rgBT /(7.6	Overlock 101
202	European and South Africa research collaboration. European Heart Journal, 2017, 38, 930-931.	2.2	0
203	Induction of cardiomyocyte proliferation, a new way forward for true myocardial regeneration?. Non-coding RNA Investigation, 0, 2, 46-46.	0.6	0
204	Induced Pluripotent Stem Cells. , 2020, , 439-455.		0
205	Title is missing!. , 2019, 14, e0227283.		0
206	Title is missing!. , 2019, 14, e0227283.		0
207	Title is missing!. , 2019, 14, e0227283.		0
208	Title is missing!. , 2019, 14, e0227283.		0