
## Ryuichi Kato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8180244/publications.pdf Version: 2024-02-01



Рушені Като

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Chemical and Chemo-Enzymatic Syntheses of Glycans Containing Ribitol Phosphate Scaffolding of<br>Matriglycan. ACS Chemical Biology, 2022, 17, 1513-1523.                                                                                                  | 3.4  | 1         |
| 2  | A fully automated crystallization apparatus for small protein quantities. Acta Crystallographica<br>Section F, Structural Biology Communications, 2021, 77, 29-36.                                                                                        | 0.8  | 11        |
| 3  | The structure of POMGNT2 provides new insights into the mechanism to determine the functional O<br>â€mannosylation site on αâ€dystroglycan. Genes To Cells, 2021, 26, 485-494.                                                                            | 1.2  | 5         |
| 4  | Automation of Crystallization Screening at KEK. Nihon Kessho Gakkaishi, 2021, 63, 212-215.                                                                                                                                                                | 0.0  | 0         |
| 5  | How Does a Microbial Rhodopsin RxR Realize Its Exceptionally High Thermostability with the<br>Proton-Pumping Function Being Retained?. Journal of Physical Chemistry B, 2020, 124, 990-1000.                                                              | 2.6  | 15        |
| 6  | FAM3B/PANDER-Like Carbohydrate-Binding Domain in a Glycosyltransferase, POMGNT1. Methods in<br>Molecular Biology, 2020, 2132, 609-619.                                                                                                                    | 0.9  | 1         |
| 7  | Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase related to muscular dystrophy. Nature Communications, 2020, 11, 303.                                                                                                | 12.8 | 21        |
| 8  | Improvement of Production and Isolation of Human Neuraminidase-1 <i>in Cellulo</i> Crystals. ACS Applied Bio Materials, 2019, 2, 4941-4952.                                                                                                               | 4.6  | 5         |
| 9  | Structural Biology of Glycans. , 2019, , 35-63.                                                                                                                                                                                                           |      | 0         |
| 10 | Carbohydrate Recognition Mechanism of the Mushroom Galectin ACG. Trends in Glycoscience and Glycotechnology, 2018, 30, SJ33-SJ46.                                                                                                                         | 0.1  | 8         |
| 11 | Carbohydrate Recognition Mechanism of the Mushroom Galectin ACG. Trends in Glycoscience and Glycotechnology, 2018, 30, SE75-SE88.                                                                                                                         | 0.1  | 3         |
| 12 | Role of the constant region domain in the structural diversity of human antibody light chains. FASEB<br>Journal, 2017, 31, 1668-1677.                                                                                                                     | 0.5  | 9         |
| 13 | Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Scientific Reports, 2017, 7, 1131.                                                                                                                | 3.3  | 203       |
| 14 | Synthesis of seleno-fucose compounds and their application to the X-ray structural determination of carbohydrate-lectin complexes using single/multi-wavelength anomalous dispersion phasing.<br>Bioorganic and Medicinal Chemistry, 2017, 25, 1132-1142. | 3.0  | 13        |
| 15 | X-ray structure of a protease-resistant mutant form of human galectin-9 having two carbohydrate recognition domains with a metal-binding site. Biochemical and Biophysical Research Communications, 2017, 490, 1287-1293.                                 | 2.1  | 5         |
| 16 | Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography. IUCrJ, 2017, 4, 639-647.                                                                                                          | 2.2  | 24        |
| 17 | Classification and Comparison of Fucose-Binding Lectins Based on Their Structures. Trends in<br>Glycoscience and Glycotechnology, 2016, 28, E25-E37.                                                                                                      | 0.1  | 3         |
| 18 | In-situ data collection at the photon factory macromolecular crystallography beamlines. AIP<br>Conference Proceedings, 2016, , .                                                                                                                          | 0.4  | 1         |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A novel method of preparing the monoform structure of catalytic antibody light chain. FASEB<br>Journal, 2016, 30, 895-908.                                                                                                                                    | 0.5 | 10        |
| 20 | A conserved island of <scp>BAG</scp> 6/Scythe is related to ubiquitin domains and participates in short hydrophobicity recognition. FEBS Journal, 2016, 283, 662-677.                                                                                         | 4.7 | 23        |
| 21 | Carbohydrate-binding domain of the POMGnT1 stem region modulates <i>O</i> -mannosylation sites of<br>α-dystroglycan. Proceedings of the National Academy of Sciences of the United States of America, 2016,<br>113, 9280-9285.                                | 7.1 | 59        |
| 22 | Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin. Biochemical and Biophysical Research Communications, 2016, 477, 477-482.                                                                                          | 2.1 | 16        |
| 23 | A novel mode of ubiquitin recognition by the ubiquitinâ€binding zinc finger domain of<br><scp>WRNIP</scp> 1. FEBS Journal, 2016, 283, 2004-2017.                                                                                                              | 4.7 | 11        |
| 24 | Selective Binding of AIRAPL Tandem UIMs to Lys48-Linked Tri-Ubiquitin Chains. Structure, 2016, 24, 412-422.                                                                                                                                                   | 3.3 | 17        |
| 25 | POMGNT1 Is Glycosylated by Mucin-Type <i>O</i> -Glycans. Biological and Pharmaceutical<br>Bulletin, 2015, 38, 1389-1394.                                                                                                                                      | 1.4 | 4         |
| 26 | Structure of a BAG6 (Bcl-2-associated Athanogene 6)-Ubl4a (Ubiquitin-like Protein 4a) Complex Reveals<br>a Novel Binding Interface That Functions in Tail-anchored Protein Biogenesis. Journal of Biological<br>Chemistry, 2015, 290, 9387-9398.              | 3.4 | 29        |
| 27 | X-Ray Crystallography of Sugar Related Proteins. , 2015, , 175-182.                                                                                                                                                                                           |     | 0         |
| 28 | Mechanism Underlying IκB Kinase Activation Mediated by the Linear Ubiquitin Chain Assembly Complex.<br>Molecular and Cellular Biology, 2014, 34, 1322-1335.                                                                                                   | 2.3 | 107       |
| 29 | Structural Basis of the Autophagy-Related LC3/Atg13 LIR Complex: Recognition and Interaction Mechanism. Structure, 2014, 22, 47-58.                                                                                                                           | 3.3 | 93        |
| 30 | Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination<br>of a carbohydrate–protein complex with single/multi-wavelength anomalous dispersion phasing.<br>Bioorganic and Medicinal Chemistry, 2014, 22, 2090-2101. | 3.0 | 29        |
| 31 | X-Ray Crystallography of Sugar Related Proteins. , 2014, , 1-8.                                                                                                                                                                                               |     | 0         |
| 32 | A New Structure Determination Method of Lectins Using a Selenium-Containing Sugar Ligand.<br>Methods in Molecular Biology, 2014, 1200, 491-499.                                                                                                               | 0.9 | 0         |
| 33 | Structural basis of preferential binding of fucose-containing saccharide by the Caenorhabditis elegans galectin LEC-6. Glycobiology, 2013, 23, 797-805.                                                                                                       | 2.5 | 11        |
| 34 | Conformational change of a unique sequence in a fungal galectin from <i>Agrocybe cylindracea</i> controls glycan ligandâ€binding specificity. FEBS Letters, 2013, 587, 3620-3625.                                                                             | 2.8 | 18        |
| 35 | Structural basis for phosphorylation-triggered autophagic clearance of <i>Salmonella</i> .<br>Biochemical Journal, 2013, 454, 459-466.                                                                                                                        | 3.7 | 92        |
| 36 | Direct metal recognition by guanine nucleotide-exchange factor in the initial step of the exchange reaction. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 345-351.                                                                 | 2.5 | 2         |

| #  | Article                                                                                                                                                                                                                            | IF                    | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| 37 | Structural Basis for Membrane Binding Specificity of the Bin/Amphiphysin/Rvs (BAR) Domain of<br>Arfaptin-2 Determined by Arl1 GTPase. Journal of Biological Chemistry, 2012, 287, 25478-25489.                                     | 3.4                   | 31        |
| 38 | Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO Journal, 2012, 31, 2590-2603.                                                                                             | 7.8                   | 55        |
| 39 | Structural Insights into the Phospholipid Binding Specificity of Human Evectin-2. Nihon Kessho<br>Gakkaishi, 2012, 54, 101-106.                                                                                                    | 0.0                   | 0         |
| 40 | Structure of a compact conformation of linear diubiquitin. Acta Crystallographica Section D:<br>Biological Crystallography, 2012, 68, 102-108.                                                                                     | 2.5                   | 29        |
| 41 | Structural basis of the strict phospholipid binding specificity of the pleckstrin homology domain of human evectin-2. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 117-123.                             | 2.5                   | 15        |
| 42 | Intracellular phosphatidylserine is essential for retrograde membrane traffic through endosomes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15846-15851.                       | 7.1                   | 163       |
| 43 | Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallographica<br>Section D: Biological Crystallography, 2010, 66, 1059-1066.                                                                     | 2.5                   | 31        |
| 44 | Crystal Structures of the CERT START Domain with Inhibitors Provide Insights into the Mechanism of<br>Ceramide Transfer. Journal of Molecular Biology, 2010, 396, 245-251.                                                         | 4.2                   | 69        |
| 45 | Complexity in Influenza Virus Targeted Drug Design: Interaction with Human Sialidases. Journal of<br>Medicinal Chemistry, 2010, 53, 2998-3002.                                                                                     | 6.4                   | 62        |
| 46 | Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation. Cell, 2009, 136, 1098-1109.                                                                                                             | 28.9                  | 667       |
| 47 | Purification, crystallization and preliminary X-ray crystallographic analysis of Rab27a GTPase in complex with exophilin4/Slp2-a effector. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 599-601. | 0.7                   | 3         |
| 48 | Miranda cargoâ€binding domain forms an elongated coiledâ€coil homodimer in solution: Implications for<br>asymmetric cell division in <i>Drosophila</i> . Protein Science, 2008, 17, 908-917.                                       | 7.6                   | 12        |
| 49 | Nucleotideâ€Dependent Conformational Changes and Assembly of the AAA ATPase SKD1/VPS4B. Traffic, 2008, 9, 2180-2189.                                                                                                               | 2.7                   | 29        |
| 50 | 1,2â€Î±â€ <scp>l</scp> â€Fucosynthase: A glycosynthase derived from an inverting αâ€glycosidase with an unusu<br>reaction mechanism. FEBS Letters, 2008, 582, 3739-3743.                                                           | <sup>1al</sup><br>2.8 | 95        |
| 51 | Elucidation of Rab27 Recruitment by Its Effectors: Structure of Rab27a Bound to Exophilin4/Slp2-a.<br>Structure, 2008, 16, 1468-1477.                                                                                              | 3.3                   | 53        |
| 52 | Structural Analysis of the Human Galectin-9 N-terminal Carbohydrate Recognition Domain Reveals<br>Unexpected Properties that Differ from the Mouse Orthologue. Journal of Molecular Biology, 2008,<br>375, 119-135.                | 4.2                   | 80        |
| 53 | Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 488-493.                 | 7.1                   | 202       |
| 54 | Structural analysis of the recognition mechanism of poly-N-acetyllactosamine by the human galectin-9<br>N-terminal carbohydrate recognition domain. Glycobiology, 2008, 19, 112-117.                                               | 2.5                   | 59        |

**К**уиісні Като

| #  | Article                                                                                                                                                                                                                                  | IF                        | CITATIONS    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------|
| 55 | 1S6-4 Structure determination of a native protein crystal by S-SAD phasing with synchrotron radiation(1S6 Cutting edge of protein crystallography with synchrotron radiation,The 46th Annual) Tj ETQq1                                   | 1 0.7 <b>&amp;</b> 4814 r | gBō /Overloo |
| 56 | 2P-031 Structure determination of a native protein crystal by S-SAD phasing with synchrotron<br>radiation(The 46th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2008, 48, S79.                                 | 0.1                       | 0            |
| 57 | Structural Basis of the Catalytic Reaction Mechanism of Novel 1,2-α-L-Fucosidase from Bifidobacterium<br>bifidum. Journal of Biological Chemistry, 2007, 282, 18497-18509.                                                               | 3.4                       | 110          |
| 58 | Structural Basis for Recognition of High Mannose Type Glycoproteins by Mammalian Transport Lectin<br>VIP36. Journal of Biological Chemistry, 2007, 282, 28246-28255.                                                                     | 3.4                       | 53           |
| 59 | Design of Disulfide-linked Thioredoxin Dimers and Multimers Through Analysis of Crystal Contacts.<br>Journal of Molecular Biology, 2007, 372, 1278-1292.                                                                                 | 4.2                       | 19           |
| 60 | Structure of the small GTPase Rab27b shows an unexpected swapped dimer. Acta Crystallographica<br>Section D: Biological Crystallography, 2007, 63, 769-779.                                                                              | 2.5                       | 23           |
| 61 | Molecular Basis for Autoregulatory Interaction Between GAE Domain and Hinge Region of GGA1.<br>Traffic, 2007, 8, 904-913.                                                                                                                | 2.7                       | 11           |
| 62 | Development of an automated large-scale protein-crystallization and monitoring system for<br>high-throughput protein-structure analyses. Acta Crystallographica Section D: Biological<br>Crystallography, 2006, 62, 1058-1065.           | 2.5                       | 62           |
| 63 | Crystal structure of GlcAT-S, a human glucuronyltransferase, involved in the biosynthesis of the<br>HNK-1 carbohydrate epitope. Proteins: Structure, Function and Bioinformatics, 2006, 65, 499-508.                                     | 2.6                       | 20           |
| 64 | Double-sided ubiquitin binding of Hrs-UIM in endosomal protein sorting. Nature Structural and<br>Molecular Biology, 2006, 13, 272-277.                                                                                                   | 8.2                       | 155          |
| 65 | Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Structural and<br>Molecular Biology, 2006, 13, 1031-1032.                                                                                               | 8.2                       | 50           |
| 66 | Structures of the Carbohydrate Recognition Domain of Ca2+-independent Cargo Receptors Emp46p<br>and Emp47p. Journal of Biological Chemistry, 2006, 281, 10410-10419.                                                                     | 3.4                       | 29           |
| 67 | Crystal Structure of the Galectin-9 N-terminal Carbohydrate Recognition Domain from Mus musculus<br>Reveals the Basic Mechanism of Carbohydrate Recognition*. Journal of Biological Chemistry, 2006, 281,<br>35884-35893.                | 3.4                       | 75           |
| 68 | Structural basis for Rab11-dependent membrane recruitment of a family of Rab11-interacting protein 3<br>(FIP3)/Arfophilin-1. Proceedings of the National Academy of Sciences of the United States of America,<br>2006, 103, 15416-15421. | 7.1                       | 92           |
| 69 | Molecular mechanism of ubiquitin recognition by GGA3 GAT domain. Genes To Cells, 2005, 10, 639-654.                                                                                                                                      | 1.2                       | 37           |
| 70 | Structure determination of GGA-GAE and γ1-ear in complex with peptides: crystallization of low-affinity complexes in membrane traffic. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 731-736.                  | 2.5                       | 6            |
| 71 | Crystal Structure of the Human Cytosolic Sialidase Neu2. Journal of Biological Chemistry, 2005, 280,<br>469-475.                                                                                                                         | 3.4                       | 148          |
| 72 | Structural basis for recognition of ubiquitinated cargo by Tom1-GAT domain. FEBS Letters, 2005, 579, 5385-5391.                                                                                                                          | 2.8                       | 34           |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Structural Basis for Acceptor Substrate Recognition of a Human Glucuronyltransferase, GlcAT-P, an<br>Enzyme Critical in the Biosynthesis of the Carbohydrate Epitope HNK-1. Journal of Biological<br>Chemistry, 2004, 279, 22693-22703.                | 3.4  | 65        |
| 74 | Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Nature<br>Structural and Molecular Biology, 2003, 10, 386-393.                                                                                               | 8.2  | 122       |
| 75 | Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature, 2002, 415, 937-941.                                                                                                                                             | 27.8 | 146       |
| 76 | Structural basis for the accessory protein recruitment by the Î <sup>3</sup> -adaptin ear domain. Nature Structural<br>Biology, 2002, 9, 527-31.                                                                                                       | 9.7  | 34        |
| 77 | Direct observation of three conformations of MutS protein regulated by adenine nucleotides. Journal of Molecular Biology, 2001, 309, 227-238.                                                                                                          | 4.2  | 22        |
| 78 | Interaction of UvrA and UvrB Proteins with a Fluorescent Single-stranded DNA. Journal of Biological Chemistry, 2000, 275, 13235-13242.                                                                                                                 | 3.4  | 12        |
| 79 | The RadA protein from a hyperthermophilic archaeon Pyrobaculum islandicum is a DNA-dependent<br>ATPase that exhibits two disparate catalytic modes, with a transition temperature at 75â€f°C. FEBS<br>Journal, 2000, 267, 1125-1137.                   | 0.2  | 25        |
| 80 | Crystal structure of a repair enzyme of oxidatively damaged DNA, MutM (Fpg), from an extreme<br>thermophile,Thermus thermophilusHB8. EMBO Journal, 2000, 19, 3857-3869.                                                                                | 7.8  | 141       |
| 81 | DNA Binding and Protein-Protein Interaction Sites in MutS, a Mismatched DNA Recognition Protein from Thermus thermophilus HB8. Journal of Biological Chemistry, 2000, 275, 40703-40709.                                                                | 3.4  | 13        |
| 82 | Observation of RecA protein monomer by small angle X-ray scattering with synchrotron radiation.<br>FEBS Letters, 2000, 482, 159-162.                                                                                                                   | 2.8  | 1         |
| 83 | Crystallization and preliminary X-ray diffraction studies of a DNA excision repair enzyme, UvrB,<br>fromThermus thermophilusHB8. Acta Crystallographica Section D: Biological Crystallography, 1999,<br>55, 704-705.                                   | 2.5  | 5         |
| 84 | Structure ofThermus thermophilusHB8 Aspartate Aminotransferase and Its Complex with Maleateâ€,â€j.<br>Biochemistry, 1999, 38, 2413-2424.                                                                                                               | 2.5  | 71        |
| 85 | Crystal Structure of Thermus thermophilus HB8 UvrB Protein, a Key Enzyme of Nucleotide Excision<br>Repair. Journal of Biochemistry, 1999, 126, 986-990.                                                                                                | 1.7  | 69        |
| 86 | Characterization of thermostable RecA protein and analysis of its interaction with single-stranded DNA. FEBS Journal, 1999, 259, 592-601.                                                                                                              | 0.2  | 10        |
| 87 | Characterization of the Oligomeric States of RecA Protein:Â Monomeric RecA Protein Can Form a<br>Nucleoprotein Filamentâ€. Biochemistry, 1998, 37, 14788-14797.                                                                                        | 2.5  | 19        |
| 88 | Thermostable repair enzyme for oxidative DNA damage from extremely thermophilic bacterium,<br>Thermus thermophilus HB8 [published erratum appears in Nucleic Acids Res 1998 Apr 1;26(7):following<br>1855]. Nucleic Acids Research, 1998, 26, 903-910. | 14.5 | 24        |
| 89 | The Novel Substrate Recognition Mechanism Utilized by Aspartate Aminotransferase of the Extreme<br>Thermophile Thermus thermophilus HB8. Journal of Biological Chemistry, 1998, 273, 29554-29564.                                                      | 3.4  | 33        |
| 90 | Domain organization and functional analysis of Thermus thermophilus MutS protein [published<br>erratum appears in Nucleic Acids Res 1998 Oct 15;26(20):following 4789]. Nucleic Acids Research, 1998,<br>26, 4153-4159.                                | 14.5 | 17        |

| #  | Article                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | Domain Structure of Thermus thermophilus UvrB Protein. Journal of Biological Chemistry, 1997, 272, 22703-22713.                                                      | 3.4  | 25        |
| 92 | Cloning and characterization of the uvrD gene from an extremely thermophilic bacterium, Thermus thermophilus HB8. Gene, 1997, 199, 77-82.                            | 2.2  | 11        |
| 93 | Cloning, sequencing and expression of the uvrA gene from an extremely thermophilic bacterium,<br>Thermus thermophilus HB8. Gene, 1996, 171, 103-106.                 | 2.2  | 16        |
| 94 | ATPase Activity of UvrB Protein from Thermus thermophilus HB8 and Its Interaction with DNA. Journal of Biological Chemistry, 1996, 271, 9612-9618.                   | 3.4  | 23        |
| 95 | An essential gene, ESR1, is required for mitotic growth, DNA repair and meiotic recombination Saccharomyces cerevisiae. Nucleic Acids Research, 1994, 22, 3104-3112. | 14.5 | 223       |
| 96 | Construction of Aminotransferase Chimeras and Analysis of Their Substrate Specificity1. Journal of Biochemistry, 1994, 115, 568-577.                                 | 1.7  | 15        |
| 97 | Interaction of Escherichia coli RecA Protein with ATP and Its Analogues1. Journal of Biochemistry, 1994, 116, 960-966.                                               | 1.7  | 22        |
| 98 | RecA Protein from an Extremely Thermophilic Bacterium, Thermus thermophilus HB81. Journal of Biochemistry, 1993, 114, 926-929.                                       | 1.7  | 33        |
| 99 | Structural Diversity Problems and the Solving Method for Antibody Light Chains. , 0, , .                                                                             |      | 3         |