
Pietro Matricardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8180077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	3.0	0
2	Dual Nanostructured Lipid Carriers/Hydrogel System for Delivery of Curcumin for Topical Skin Applications. Biomolecules, 2022, 12, 780.	1.8	12
3	Anomalous enhanced water diffusion in polysaccharide interpenetrating hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 125892.	2.3	4
4	Volume fraction determination of microgel composed of interpenetrating polymer networks of PNIPAM and polyacrylic acid. Journal of Physics Condensed Matter, 2021, 33, 174004.	0.7	11
5	Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydrate Polymers, 2021, 266, 118119.	5.1	11
6	Hyaluronan-Cholesterol Nanogels for the Enhancement of the Ocular Delivery of Therapeutics. Pharmaceutics, 2021, 13, 1781.	2.0	12
7	Nanoâ€hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. International Wound Journal, 2020, 17, 485-490.	1.3	58
8	Glycerol as a green solvent for enhancing the formulation of dextran methacrylate and gellan-based semi-interpenetrating polymer networks. Journal of Materials Science, 2020, 55, 9562-9577.	1.7	10
9	An integrated approach to the recovery of travertine biodegradation by combining phyto-cleaning with genomic characterization. Microchemical Journal, 2020, 156, 104918.	2.3	10
10	Biodistribution and intracellular localization of hyaluronan and its nanogels. A strategy to target intracellular S. aureus in persistent skin infections. Journal of Controlled Release, 2020, 326, 1-12.	4.8	24
11	Supramolecular gels of cholesterol-modified gellan gum with disc-like and worm-like micelles. Journal of Colloid and Interface Science, 2019, 556, 301-312.	5.0	6
12	Intracellular Delivery of Natural Antioxidants via Hyaluronan Nanohydrogels. Pharmaceutics, 2019, 11, 532.	2.0	16
13	Advances in Drug Delivery and Biomaterials: Facts and Vision. Pharmaceutics, 2019, 11, 48.	2.0	6
14	Uptake and intracellular fate of biocompatible nanocarriers in cycling and noncycling cells. Nanomedicine, 2019, 14, 301-316.	1.7	17
15	Halting hyaluronidase activity with hyaluronan-based nanohydrogels: development of versatile injectable formulations. Carbohydrate Polymers, 2019, 221, 209-220.	5.1	10
16	PVA hydrogel as polymer electrolyte for electrochemical impedance analysis on archaeological metals. Journal of Cultural Heritage, 2019, 37, 113-120.	1.5	18
17	Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 244-249.	2.0	63
18	Gellan Nanohydrogels: Novel Nanodelivery Systems for Cutaneous Administration of Piroxicam. Molecular Pharmaceutics, 2018, 15, 1028-1036.	2.3	22

#	Article	IF	CITATIONS
19	Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 569-579.	1.7	46
20	Hyaluronanâ€Based Nanohydrogels for Targeting Intracellular <i>S. Aureus</i> in Human Keratinocytes. Advanced Healthcare Materials, 2018, 7, e1701483.	3.9	26
21	PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: a cardiovascular approach. Biomedical Materials (Bristol), 2018, 13, 015020.	1.7	23
22	Long-Circulating Hyaluronan-Based Nanohydrogels as Carriers of Hydrophobic Drugs. Pharmaceutics, 2018, 10, 213.	2.0	4
23	Semi-IPNs and IPN-based hydrogels. , 2018, , 91-124.		32
24	Pursuing Intracellular Pathogens with Hyaluronan. From a â€`Pro-Infection' Polymer to a Biomaterial for â€`Trojan Horse' Systems. Molecules, 2018, 23, 939.	1.7	14
25	Semi-IPN- and IPN-Based Hydrogels. Advances in Experimental Medicine and Biology, 2018, 1059, 155-188.	0.8	30
26	Glycerosomes: Investigation of role of 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances. International Journal of Pharmaceutics, 2017, 532, 401-407.	2.6	34
27	"Click―hyaluronan based nanohydrogels as multifunctionalizable carriers for hydrophobic drugs. Carbohydrate Polymers, 2017, 174, 706-715.	5.1	26
28	Hyaluronan-cholesterol nanohydrogels: Characterisation and effectiveness in carrying alginate lyase. New Biotechnology, 2017, 37, 80-89.	2.4	24
29	Design of Hybrid Gels Based on Gellan-Cholesterol Derivative and P90G Liposomes for Drug Depot Applications. Gels, 2017, 3, 18.	2.1	1
30	Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery. International Journal of Pharmaceutics, 2016, 505, 204-211.	2.6	103
31	Hyaluronan/Tannic Acid Nanoparticles Via Catechol/Boronate Complexation as a Smart Antibacterial System. Macromolecular Bioscience, 2016, 16, 1815-1823.	2.1	48
32	Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. International Journal of Pharmaceutics, 2016, 511, 198-204.	2.6	68
33	PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 151-160.	1.5	18
34	Influence of borate amount on the swelling and rheological properties of the Scleroglucan/borax system. Journal of Applied Polymer Science, 2016, 133, .	1.3	1
35	From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs. Journal of Drug Delivery Science and Technology, 2016, 32, 88-99.	1.4	25
36	Gel-embedded niosomes: Preparation, characterization and release studies of a new system for topical drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 125, 291-299.	2.5	52

#	Article	IF	CITATIONS
37	One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave. Journal of Materials Science: Materials in Medicine, 2015, 26, 5362.	1.7	23
38	An in situ gelling system for bone regeneration of osteochondral defects. European Polymer Journal, 2015, 72, 642-650.	2.6	23
39	Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan. Journal of Drug Delivery Science and Technology, 2015, 30, 300-309.	1.4	40
40	Effects of ethanol and diclofenac on the organization of hydrogenated phosphatidylcholine bilayer vesicles and their ability as skin carriers. Journal of Materials Science: Materials in Medicine, 2015, 26, 137.	1.7	3
41	Polyaspartamide-Doxorubicin Conjugate as Potential Prodrug for Anticancer Therapy. Pharmaceutical Research, 2015, 32, 1557-1569.	1.7	19
42	Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers. Carbohydrate Polymers, 2015, 115, 502-509.	5.1	27
43	Bioactive Hydrogel Scaffolds - Advances in Cartilage Regeneration Through Controlled Drug Delivery. Current Pharmaceutical Design, 2015, 21, 1545-1555.	0.9	32
44	Gellan gum nanohydrogel containing anti-inflammatory and anti-cancer drugs: a multi-drug delivery system for a combination therapy in cancer treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 208-216.	2.0	83
45	Design and characterization of a chitosan physical gel promoting wound healing in mice. Journal of Materials Science: Materials in Medicine, 2014, 25, 1483-1493.	1.7	31
46	Chasing bacteria within the cells using levofloxacin-loaded hyaluronic acid nanohydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 518-523.	2.0	48
47	Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids and Surfaces B: Biointerfaces, 2014, 117, 360-367.	2.5	52
48	Topical <scp>KGF</scp> treatment as a therapeutic strategy for vaginal atrophy in a model of ovariectomized mice. Journal of Cellular and Molecular Medicine, 2014, 18, 1895-1907.	1.6	13
49	Effect of diclofenac and glycol intercalation on structural assembly of phospholipid lamellar vesicles. International Journal of Pharmaceutics, 2013, 456, 1-9.	2.6	43
50	Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 2013, 65, 1172-1187.	6.6	450
51	Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations. EXPRESS Polymer Letters, 2013, 7, 733-746.	1.1	41
52	Sonication-Based Improvement of the Physicochemical Properties of Guar Gum as a Potential Substrate for Modified Drug Delivery Systems. BioMed Research International, 2013, 2013, 1-11.	0.9	14
53	Hyaluronic Acid Nanohydrogels as a Useful Tool for BSAO Immobilization in the Treatment of Melanoma Cancer Cells. Macromolecular Bioscience, 2013, 13, 1185-1194.	2.1	53
54	Evaluation of Rheological Properties and Swelling Behaviour of Sonicated Scleroglucan Samples. Molecules, 2012, 17, 2283-2297.	1.7	9

#	Article	IF	CITATIONS
55	Mesh size distribution determination of interpenetrating polymer network hydrogels. Soft Matter, 2012, 8, 7708.	1.2	53
56	Self-assembled gellan-based nanohydrogels as a tool for prednisolone delivery. Soft Matter, 2012, 8, 11557.	1.2	60
57	Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohydrate Polymers, 2012, 90, 1362-1370.	5.1	58
58	In situ forming hydrogels of new amino hyaluronic acid/benzoyl-cysteine derivatives as potential scaffolds for cartilage regeneration. Soft Matter, 2012, 8, 4918.	1.2	41
59	Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid and Polymer Science, 2012, 290, 1575-1582.	1.0	15
60	Calcium alginate/dextran methacrylate IPN beads as protecting carriers for protein delivery. Journal of Materials Science: Materials in Medicine, 2012, 23, 1715-1722.	1.7	11
61	Novel pH-Sensitive Physical Hydrogels of Carboxymethyl Scleroglucan. Journal of Pharmaceutical Sciences, 2012, 101, 256-267.	1.6	14
62	Liposomes Coated with Chitosan–Xanthan Gum (Chitosomes) as Potential Carriers for Pulmonary Delivery of Rifampicin. Journal of Pharmaceutical Sciences, 2012, 101, 566-575.	1.6	66
63	Mechanical and drug delivery properties of a chitosan–tartaric acid hydrogel suitable for biomedical applications. Journal of Applied Polymer Science, 2012, 123, 842-849.	1.3	14
64	Anisotropic enhanced water diffusion in scleroglucan gel tablets. Soft Matter, 2011, 7, 6068.	1.2	18
65	Hyaluronic Acid and Dextran-Based Semi-IPN Hydrogels as Biomaterials for Bioprinting. Biomacromolecules, 2011, 12, 1831-1838.	2.6	249
66	A New Vesicle-loaded Hydrogel System Suitable for Topical Applications: Preparation and Characterization. Journal of Pharmacy and Pharmaceutical Sciences, 2011, 14, 336.	0.9	54
67	Preparation and characterization of a new gellan gum and sulphated hyaluronic acid hydrogel designed for epidural scar prevention. Journal of Materials Science: Materials in Medicine, 2011, 22, 263-271.	1.7	39
68	In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Acta Biomaterialia, 2011, 7, 1627-1633.	4.1	90
69	Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydrate Polymers, 2011, 86, 208-213.	5.1	45
70	Mechanical characterization of polysaccharide/polyaminoacid hydrogels as potential scaffolds for tissue regeneration. Macromolecular Research, 2011, 19, 1264-1271.	1.0	1
71	Injectable and in situ gelling hydrogels for modified protein release. European Biophysics Journal, 2010, 39, 903-909.	1.2	31
72	Novel thermosensitive calcium alginate microspheres: Physico-chemical characterization and delivery properties. Acta Biomaterialia, 2010, 6, 3657-3664.	4.1	40

#	Article	IF	CITATIONS
73	Hydrogels from scleroglucan and ionic crosslinkers: Characterization and drug delivery. Journal of Applied Polymer Science, 2010, 115, 3610-3622.	1.3	12
74	Synergistic interaction of Locust Bean Gum and Xanthan investigated by rheology and light scattering. Carbohydrate Polymers, 2010, 82, 733-741.	5.1	32
75	Preparation and Characterization of Novel Gellan Gum Hydrogels Suitable for Modified Drug Release. Molecules, 2009, 14, 3376-3391.	1.7	99
76	Physical Carboxymethylscleroglucan/Calcium Ion Hydrogels as Modified Drug Delivery Systems in Topical Formulations. Molecules, 2009, 14, 2684-2698.	1.7	18
77	Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point. Food Hydrocolloids, 2009, 23, 210-220.	5.6	60
78	Peculiar behavior of polysaccharide/borax hydrogel tablets: a dynamomechanical characterization. Colloid and Polymer Science, 2009, 287, 413-423.	1.0	13
79	Carboxymethyl derivative of scleroglucan: a novel thermosensitive hydrogel forming polysaccharide for drug delivery applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 1081-1087.	1.7	16
80	AB5/ABS composite material for hydrogen storage. International Journal of Hydrogen Energy, 2009, 34, 4592-4596.	3.8	23
81	Scleroglucan/borax/drug hydrogels: Structure characterisation by means of rheological and diffusion experiments. Carbohydrate Polymers, 2009, 78, 377-383.	5.1	30
82	Scleroglucan-Borax Hydrogel: A Flexible Tool for Redox Protein Immobilization. Langmuir, 2009, 25, 11097-11104.	1.6	7
83	Recent advances and perspectives on coated alginate microspheres for modified drug delivery. Expert Opinion on Drug Delivery, 2008, 5, 417-425.	2.4	95
84	In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydrogels for Biomedical Applications: Mechanical Characterization and Drug Delivery Properties. Biomacromolecules, 2008, 9, 2014-2020.	2.6	67
85	Semi-IPN hydrogel based on scleroglucan and alginate: drug delivery behavior and mechanical characterisation. Journal of Drug Delivery Science and Technology, 2007, 17, 193-197.	1.4	11
86	Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids. Molecules, 2007, 12, 805-814.	1.7	66
87	Two galactomannans and scleroglucan as matrices for drug delivery: Preparation and release studies. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 200-209.	2.0	74
88	Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 682-689.	2.0	11
89	Dynamo-mechanical and rheological characterization of guar gum hydrogels. European Polymer Journal, 2007, 43, 3355-3367.	2.6	49
90	Cyclodextrin/PEG based hydrogels for multi-drug delivery. International Journal of Pharmaceutics, 2007, 345, 42-50.	2.6	102

#	Article	IF	CITATIONS
91	Polysaccharide hydrogels for modified release formulations. Journal of Controlled Release, 2007, 119, 5-24.	4.8	855
92	Characterization of polysaccharide hydrogels for modified drug delivery. European Biophysics Journal, 2007, 36, 693-700.	1.2	48
93	Drug delivery strategies using polysaccharidic gels. Expert Opinion on Drug Delivery, 2006, 3, 395-404.	2.4	69
94	Drug delivery matrices based on scleroglucan/alginate/borax gels. International Journal of Pharmaceutics, 2006, 316, 21-28.	2.6	23
95	Rheological and mechanical properties of Pluronic–alginate gels for drug-eluting stent coating. Journal of Controlled Release, 2006, 116, e85-e87.	4.8	4
96	A new polysaccharidic gel matrix for drug delivery: preparation and mechanical properties. Journal of Controlled Release, 2005, 102, 643-656.	4.8	50
97	Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery. Molecules, 2005, 10, 6-33.	1.7	99
98	Gelation of chemically cross-linked polygalacturonic acid derivatives. Carbohydrate Polymers, 1995, 27, 215-220.	5.1	34
99	Rheological gel-point determination for a polysaccharide system undergoing chemical cross-linking. Macromolecules, 1993, 26, 4386-4387.	2.2	27
100	A rapid quantitative determination of pectin and carboxymethyl cellulose in solution using poly(hexamethylenebiguanidinium chloride). Carbohydrate Polymers, 1992, 17, 199-203.	5.1	4
101	A novel procedure for determining the average charge density of pectin chains. Food Hydrocolloids, 1991 5 307-312	5.6	2