Lujendra Ojha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8179869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience, 2015, 8, 829-832.	5.4	513
2	Seasonal Flows on Warm Martian Slopes. Science, 2011, 333, 740-743.	6.0	451
3	Recurring slope lineae in equatorial regions of Mars. Nature Geoscience, 2014, 7, 53-58.	5.4	248
4	Exposed subsurface ice sheets in the Martian mid-latitudes. Science, 2018, 359, 199-201.	6.0	174
5	HiRISE observations of Recurring Slope Lineae (RSL) during southern summer on Mars. Icarus, 2014, 231, 365-376.	1.1	90
6	Transport processes induced by metastable boiling water under Martian surface conditions. Nature Geoscience, 2016, 9, 425-428.	5.4	65
7	Geologic context of recurring slope lineae in Melas and Coprates Chasmata, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 1204-1231.	1.5	56
8	InSight Constraints on the Global Character of the Martian Crust. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	45
9	Small edifice features in Chryse Planitia, Mars: Assessment of a mud volcano hypothesis. Icarus, 2016, 268, 56-75.	1.1	43
10	Sulfates hydrating bulk soil in the Martian low and middle latitudes. Geophysical Research Letters, 2014, 41, 7987-7996.	1.5	35
11	Spectral constraints on the formation mechanism of recurring slope lineae. Geophysical Research Letters, 2013, 40, 5621-5626.	1.5	33
12	The Density of the Medusae Fossae Formation: Implications for its Composition, Origin, and Importance in Martian History. Journal of Geophysical Research E: Planets, 2018, 123, 1368-1379.	1.5	31
13	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data. Geophysical Research Letters, 2020, 47, e2020GL087234.	1.5	30
14	Comparisons of Triggered Tremor in California. Bulletin of the Seismological Society of America, 2012, 102, 900-908.	1.1	29
15	The Medusae Fossae Formation as the single largest source of dust on Mars. Nature Communications, 2018, 9, 2867.	5.8	29
16	Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006617.	1.5	29
17	Layered MegaBlocks in the central uplifts of impact craters. Icarus, 2012, 221, 710-720.	1.1	22
18	Amagmatic hydrothermal systems on Mars from radiogenic heat. Nature Communications, 2021, 12, 1754.	5.8	21

Lujendra Ojha

#	Article	IF	CITATIONS
19	Seismicity and the strange rubbing boulders of the Atacama Desert, northern Chile. Geology, 2012, 40, 851-854.	2.0	20
20	Martian Mantle Heat Flow Estimate From the Lack of Lithospheric Flexure in the South Pole of Mars: Implications for Planetary Evolution and Basal Melting. Geophysical Research Letters, 2021, 48, e2020GL091409.	1.5	18
21	Physical models and predictions for recurring slope lineae formed by wet and dry processes Icarus, 2020, 335, 113385.	1.1	16
22	Seasonal Slumps in Juventae Chasma, Mars. Journal of Geophysical Research E: Planets, 2017, 122, 2193-2214.	1.5	14
23	Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography. Geophysical Research Letters, 2019, 46, 8671-8679.	1.5	13
24	Groundwater production from geothermal heating on early Mars and implication for early martian habitability. Science Advances, 2020, 6, .	4.7	13
25	Revealing Active Mars with HiRISE Digital Terrain Models. Remote Sensing, 2022, 14, 2403.	1.8	11
26	The association of hydrogen with sulfur on Mars across latitudes, longitudes, and compositional extremes. Journal of Geophysical Research E: Planets, 2016, 121, 1321-1341.	1.5	9
27	Depletion of Heat Producing Elements in the Martian Mantle. Geophysical Research Letters, 2019, 46, 12756-12763.	1.5	9
28	Atmospheric injection of sulfur from the Medusae Fossae forming events. Planetary and Space Science, 2019, 179, 104734.	0.9	8
29	Contrasting Regional Soil Alteration Across the Topographic Dichotomy of Mars. Geophysical Research Letters, 2019, 46, 13668-13677.	1.5	8
30	The History of Water in Martian Magmas From Thorium Maps. Geophysical Research Letters, 2022, 49, .	1.5	7
31	Millennial-scale denudation rates in the Himalaya of Far Western Nepal. Earth Surface Dynamics, 2019, 7, 969-987.	1.0	4
32	Revisiting subglacial hydrology as an origin for Mars' valley networks. Earth and Planetary Science Letters, 2022, 594, 117699.	1.8	3