Martin Stynes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8179525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using Complete Monotonicity to Deduce Local Error Estimates for Discretisations of a Multi-Term Time-Fractional Diffusion Equation. Computational Methods in Applied Mathematics, 2022, 22, 15-29.	0.8	7
2	Block boundary value methods for solving linear neutral Volterra integro-differential equations with weakly singular kernels. Journal of Computational and Applied Mathematics, 2022, 401, 113747.	2.0	3
3	A Sharp \$\$alpha \$\$-Robust \$\$L^infty (H^1)\$\$ Error Bound for a Time-Fractional Allen-Cahn Problem Discretised by the Alikhanov \$\$L2-1_sigma \$\$ Scheme and a Standard FEM. Journal of Scientific Computing, 2022, 91, 1.	2.3	14
4	Balanced-Norm and Energy-Norm Error Analyses for a Backward Euler/FEM Solving a Singularly Perturbed Parabolic Reaction-Diffusion Problem. Journal of Scientific Computing, 2022, 92, .	2.3	1
5	A Posteriori Error Analysis for Variable-Coefficient Multiterm Time-Fractional Subdiffusion Equations. Journal of Scientific Computing, 2022, 92, .	2.3	8
6	Blow-up of error estimates in time-fractional initial-boundary value problems. IMA Journal of Numerical Analysis, 2021, 41, 974-997.	2.9	60
7	A finite difference method for an initial–boundary value problem with a Riemann–Liouville–Caputo spatial fractional derivative. Journal of Computational and Applied Mathematics, 2021, 381, 113020.	2.0	1
8	α-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numerical Algorithms, 2021, 87, 1749-1766.	1.9	25
9	Block boundary value methods for linear weakly singular Volterra integro-differential equations. BIT Numerical Mathematics, 2021, 61, 691-720.	2.0	10
10	Two Finite Difference Schemes for Multi-Dimensional Fractional Wave Equations with Weakly Singular Solutions. Computational Methods in Applied Mathematics, 2021, 21, 913-928.	0.8	10
11	A weighted and balanced FEM for singularly perturbed reaction-diffusion problems. Calcolo, 2021, 58, 1.	1.1	9
12	An <mml:math <br="" display="inline" id="d1e413" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si13.svg"> <mml:mi>α</mml:mi></mml:math> -robust finite element method for a multi-term time-fractional diffusion problem. Journal of Computational and Applied Mathematics, 2021, 389, 113334.	2.0	20
13	An α-robust finite difference method for a time-fractional radially symmetric diffusion problem. Computers and Mathematics With Applications, 2021, 97, 386-393.	2.7	3
14	An \$\$alpha \$\$-Robust Semidiscrete Finite Element Method for a Fokker–Planck Initial-Boundary Value Problem with Variable-Order Fractional Time Derivative. Journal of Scientific Computing, 2021, 86, 1.	2.3	4
15	A new analysis of a numerical method for the time-fractional Fokker–Planck equation with general forcing. IMA Journal of Numerical Analysis, 2020, 40, 1217-1240.	2.9	10
16	A direct discontinuous Galerkin finite element method for convection-dominated two-point boundary value problems. Numerical Algorithms, 2020, 83, 741-765.	1.9	2
17	Optimal spatial <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>ຳml:າ<u>າ</u>ນທ> <td>nm<mark>80</mark>1row><</td></td></mmi:math>	ຳml :າ<u>າ</u>ນທ > <td>nm<mark>80</mark>1row><</td>	nm <mark>80</mark> 1row><
18	Computational and Applied Mathematics, 2020, 367, 112465. Convergence analysis of a finite difference scheme for a two-point boundary value problem with a Riemann–Liouville–Caputo fractional derivative. BIT Numerical Mathematics, 2020, 60, 411-439.	2.0	9

#	Article	IF	CITATIONS
19	Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem. Journal of Scientific Computing, 2020, 82, 1.	2.3	30
20	Error analysis of a finite element method with GMMP temporal discretisation for a time-fractional diffusion equation. Computers and Mathematics With Applications, 2020, 79, 2784-2794.	2.7	9
21	Optimal H1 spatial convergence of a fully discrete finite element method for the time-fractional Allen-Cahn equation. Advances in Computational Mathematics, 2020, 46, 1.	1.6	24
22	A discrete comparison principle for the time-fractional diffusion equation. Computers and Mathematics With Applications, 2020, 80, 917-922.	2.7	13
23	Barrier Function Local and Global Analysis of an L1 Finite Element Method for a Multiterm Time-Fractional Initial-Boundary Value Problem. Journal of Scientific Computing, 2020, 84, 1.	2.3	11
24	Good (and Not So Good) Practices in Computational Methods for Fractional Calculus. Mathematics, 2020, 8, 324.	2.2	32
25	Error Analysis of a Finite Difference Method on Graded Meshes for a Multiterm Time-Fractional Initial-Boundary Value Problem. Computational Methods in Applied Mathematics, 2020, 20, 815-825.	0.8	26
26	Why Fractional Derivatives with Nonsingular Kernels Should Not Be Used. Fractional Calculus and Applied Analysis, 2020, 23, 610-634.	2.2	88
27	Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction–diffusion problems. Journal of Numerical Mathematics, 2019, 27, 37-55.	3.5	5
28	A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition. Applied Numerical Mathematics, 2019, 135, 15-29.	2.1	13
29	Green's functions, positive solutions, and a Lyapunov inequality for a caputo fractional-derivative boundary value problem. Fractional Calculus and Applied Analysis, 2019, 22, 750-766.	2.2	5
30	Superconvergence of the direct discontinuous Galerkin method for a timeâ€fractional initialâ€boundary value problem. Numerical Methods for Partial Differential Equations, 2019, 35, 2076-2090.	3.6	6
31	Collocation methods for general Riemann-Liouville two-point boundary value problems. Advances in Computational Mathematics, 2019, 45, 897-928.	1.6	22
32	An analysis of the Grünwald–Letnikov scheme for initial-value problems with weakly singular solutions. Applied Numerical Mathematics, 2019, 139, 52-61.	2.1	27
33	Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem. Journal of Scientific Computing, 2019, 79, 624-647.	2.3	96
34	Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions. Advances in Computational Mathematics, 2019, 45, 1105-1128.	1.6	5
35	Singularities. , 2019, , 287-306.		6
36	Existence, uniqueness and regularity of the solution of the time-fractional Fokker–Planck equation with general forcing. Communications on Pure and Applied Analysis, 2019, 18, 2765-2787.	0.8	21

#	Article	IF	CITATIONS
37	Optimal uniform-convergence results for convection–diffusion problems in one dimension using preconditioning. Journal of Computational and Applied Mathematics, 2018, 338, 227-238.	2.0	9
38	Collocation Methods for General Caputo Two-Point Boundary Value Problems. Journal of Scientific Computing, 2018, 76, 390-425.	2.3	43
39	The Green's function and a maximum principle for a Caputo two-point boundary value problem with a convection term. Journal of Mathematical Analysis and Applications, 2018, 461, 198-218.	1.0	11
40	A Fitted Scheme for a Caputo Initial-Boundary Value Problem. Journal of Scientific Computing, 2018, 76, 583-609.	2.3	27
41	Convergence in Positive Time for a Finite Difference Method Applied to a Fractional Convection-Diffusion Problem. Computational Methods in Applied Mathematics, 2018, 18, 33-42.	0.8	41
42	Supercloseness of edge stabilization on Shishkin rectangular meshes for convection–diffusion problems with exponential layers. IMA Journal of Numerical Analysis, 2018, 38, 2105-2122.	2.9	14
43	Fractional-order derivatives defined by continuous kernels are too restrictive. Applied Mathematics Letters, 2018, 85, 22-26.	2.7	33
44	Optimal \$\$L^infty (L^2)\$\$ L â^ž (L 2) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction-diffusion problem. BIT Numerical Mathematics, 2018, 58, 661-690.	2.0	33
45	Convergence Outside the Initial Layer for a Numerical Method for the Time-Fractional Heat Equation. Lecture Notes in Computer Science, 2017, , 82-94.	1.3	3
46	Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation. SIAM Journal on Numerical Analysis, 2017, 55, 1057-1079.	2.3	577
47	Supercloseness of continuous interior penalty method for convection–diffusion problems with characteristic layers. Computer Methods in Applied Mechanics and Engineering, 2017, 319, 549-566.	6.6	20
48	Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Applied Mathematics Letters, 2017, 74, 187-192.	2.7	7
49	Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem. Advances in Computational Mathematics, 2017, 43, 77-99.	1.6	32
50	Too Much Regularity May Force Too Much Uniqueness. Fractional Calculus and Applied Analysis, 2016, 19, 1554-1562.	2.2	113
51	Post-primary students' images of mathematics: findings from a survey of Irish ordinary level mathematics students. International Journal of Mathematical Education in Science and Technology, 2016, 47, 1009-1027.	1.4	Ο
52	Necessary conditions for convergence of difference schemes for fractional-derivative two-point boundary value problems. BIT Numerical Mathematics, 2016, 56, 1455-1477.	2.0	2
53	A spectral collocation method for a weakly singular Volterra integral equation of the second kind. Advances in Computational Mathematics, 2016, 42, 1015-1030.	1.6	18
54	A Caputo Two-Point Boundary Value Problem: Existence, Uniqueness and Regularity of a Solution. Modelirovanie I Analiz Informacionnyh Sistem, 2016, 23, 370-376.	0.3	3

#	Article	IF	CITATIONS
55	Boundary Layers in a Two-Point Boundary Value Problem with a Caputo Fractional Derivative. Computational Methods in Applied Mathematics, 2015, 15, 79-95.	0.8	10
56	A balanced finite element method for a system of singularly perturbed reaction-diffusion two-point boundary value problems. Numerical Algorithms, 2015, 70, 691-707.	1.9	13
57	An efficient collocation method for a Caputo two-point boundary value problem. BIT Numerical Mathematics, 2015, 55, 1105-1123.	2.0	41
58	Formal Consistency Versus Actual Convergence Rates of Difference Schemes for Fractional-Derivative Boundary Value Problems. Fractional Calculus and Applied Analysis, 2015, 18, 419-436.	2.2	6
59	Some Open Questions in the Numerical Analysis of Singularly Perturbed Differential Equations. Computational Methods in Applied Mathematics, 2015, 15, 531-550.	0.8	30
60	Central difference approximation of convection in Caputo fractional derivative two-point boundary value problems. Journal of Computational and Applied Mathematics, 2015, 273, 103-115.	2.0	32
61	A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA Journal of Numerical Analysis, 2015, 35, 698-721.	2.9	56
62	Boundary Layers in a Riemann-Liouville Fractional Derivative Two-Point Boundary Value Problem. Lecture Notes in Computational Science and Engineering, 2015, , 87-98.	0.3	0
63	The image of mathematics held by Irish post-primary students. International Journal of Mathematical Education in Science and Technology, 2014, 45, 879-891.	1.4	6
64	Sharp anisotropic interpolation error estimates for rectangular Raviart-Thomas elements. Mathematics of Computation, 2014, 83, 2675-2689.	2.1	4
65	A robust finite difference method for a singularly perturbed degenerate parabolic problem II. IMA Journal of Numerical Analysis, 2013, 33, 460-480.	2.9	2
66	A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems. SIAM Journal on Numerical Analysis, 2012, 50, 2729-2743.	2.3	69
67	Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities. Mathematics of Computation, 2011, 81, 661-685.	2.1	11
68	Postprocessed Two-Scale Finite Element Discretizations, Part I. SIAM Journal on Numerical Analysis, 2011, 49, 1947-1971.	2.3	3
69	Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction–diffusion problem. Numerische Mathematik, 2011, 119, 787-810.	1.9	20
70	A simpler analysis of a hybrid numerical method for time-dependent convection–diffusion problems. Journal of Computational and Applied Mathematics, 2011, 235, 5240-5248.	2.0	23
71	Fundamental Properties of the Solution of a Singularly Perturbed Degenerate Parabolic Problem. Lecture Notes in Computational Science and Engineering, 2011, , 235-243.	0.3	0
72	Regularity and Derivative Bounds for a Convection-Diffusion Problem with Neumann Boundary Conditions on Characteristic Boundaries. Zeitschrift Fur Analysis Und Ihre Anwendung, 2010, 29, 163-181.	0.6	2

#	Article	IF	CITATIONS
73	Singularly Perturbed Convection — Diffusion Problems in One Dimension: Bounds on Derivatives. Computational Methods in Applied Mathematics, 2009, 9, 281-291.	0.8	0
74	Numerical Solution of Systems of Singularly Perturbed Differential Equations. Computational Methods in Applied Mathematics, 2009, 9, 165-191.	0.8	32
75	A two-scale sparse grid method for a singularly perturbed reaction-diffusion problem in two dimensions. IMA Journal of Numerical Analysis, 2009, 29, 986-1007.	2.9	42
76	Numerical analysis of a strongly coupled system of two singularly perturbed convection–diffusion problems. Advances in Computational Mathematics, 2009, 30, 101-121.	1.6	27
77	The combination technique for a two-dimensional convection-diffusion problem with exponential layers. Applications of Mathematics, 2009, 54, 203-223.	0.9	9
78	Regularity and derivative bounds for a convection–diffusion problem with a Neumann outflow condition. Journal of Differential Equations, 2009, 247, 2495-2516.	2.2	3
79	An Iterative Numerical Algorithm for a Strongly Coupled System of Singularly Perturbed Convection-Diffusion Problems. Lecture Notes in Computer Science, 2009, , 104-115.	1.3	5
80	Layers and corner singularities in singularly perturbed elliptic problems. BIT Numerical Mathematics, 2008, 48, 309-314.	2.0	10
81	A parameter-robust numerical method for a system of reaction–diffusion equations in two dimensions. Numerical Methods for Partial Differential Equations, 2008, 24, 312-334.	3.6	28
82	Using rectangular elements in the SDFEM for a convection–diffusion problem with a boundary layer. Applied Numerical Mathematics, 2008, 58, 1789-1802.	2.1	35
83	FINITE DIFFERENCE SCHEME FOR A SINGULARLY PERTURBED PARABOLIC EQUATIONS IN THE PRESENCE OF INITIAL AND BOUNDARY LAYERS. Mathematical Modelling and Analysis, 2008, 13, 483-492.	1.5	0
84	Finite difference scheme for the accurate modelling of boundary layers in microchannels. , 2008, , .		1
85	A finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions. Mathematics of Computation, 2008, 77, 2085-2096.	2.1	31
86	Numerical Treatment of Partial Differential Equations. , 2007, , .		191
87	Convection-diffusion-reaction problems, SDFEM/SUPG and a priori meshes. International Journal of Computing Science and Mathematics, 2007, 1, 412.	0.3	4
88	Sharpened bounds for corner singularities and boundary layers in a simple convection–diffusion problem. Applied Mathematics Letters, 2007, 20, 539-544.	2.7	44
89	A singularly perturbed convection–diffusion problem in a half-plane. Applicable Analysis, 2006, 85, 1471-1485.	1.3	9
90	Numerical analysis of singularly perturbed nonlinear reaction-diffusion problems with multiple solutions. Computers and Mathematics With Applications, 2006, 51, 857-864.	2.7	9

#	Article	IF	CITATIONS
91	Corner singularities and boundary layers in a simple convection–diffusion problem. Journal of Differential Equations, 2005, 213, 81-120.	2.2	67
92	Grid equidistribution for reaction–diffusion problems in one dimension. Numerical Algorithms, 2005, 40, 305-322.	1.9	43
93	Steady-state convection-diffusion problems. Acta Numerica, 2005, 14, 445-508.	10.7	141
94	Numerical analysis of a singularly perturbed nonlinear reaction–diffusion problem with multiple solutions. Applied Numerical Mathematics, 2004, 51, 273-288.	2.1	33
95	Process optimization strategies to diminish variability in the quality of discrete packaged foods during thermal processing. Journal of Food Engineering, 2003, 60, 147-155.	5.2	21
96	Richardson extrapolation for a convection–diffusion problem using a Shishkin mesh. Applied Numerical Mathematics, 2003, 45, 315-329.	2.1	49
97	The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy. SIAM Journal on Numerical Analysis, 2003, 41, 1620-1642.	2.3	103
98	A Jejune Heuristic Mesh Theorem. Computational Methods in Applied Mathematics, 2003, 3, 488-492.	0.8	5
99	A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem. SIAM Journal on Numerical Analysis, 2001, 39, 1446-1467.	2.3	104
100	The sdfem on Shishkin meshes for linear convection-diffusion problems. Numerische Mathematik, 2001, 87, 457-484.	1.9	38
101	Approximation of derivatives in a convection–diffusion two-point boundary value problem. Applied Numerical Mathematics, 2001, 39, 47-60.	2.1	25
102	Numerical methods on Shishkin meshes for linear convection–diffusion problems. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 3527-3542.	6.6	60
103	Asymptotic Analysis and Shishkin-Type Decomposition for an Elliptic Convection–Diffusion Problem. Journal of Mathematical Analysis and Applications, 2001, 261, 604-632.	1.0	116
104	Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection-diffusion problem with exponential layers. Journal of Numerical Mathematics, 2001, 9, .	3.5	7
105	The streamline-diffusion method for nonconforming Qrot1 elements on rectangular tensor-product meshes. IMA Journal of Numerical Analysis, 2001, 21, 123-142.	2.9	26
106	n-Widths and Singularly Perturbed Boundary Value Problems II. SIAM Journal on Numerical Analysis, 2001, 39, 690-707.	2.3	3
107	n-Widths and Singularly Perturbed Boundary Value Problems. SIAM Journal on Numerical Analysis, 1999, 36, 1604-1620.	2.3	7
108	A hybrid difference scheme on a Shishkin mesh for linear convection–diffusion problems. Applied Numerical Mathematics, 1999, 31, 255-270.	2.1	62

#	Article	IF	CITATIONS
109	A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numerical Algorithms, 1998, 18, 337-360.	1.9	45
110	On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method. Computer Methods in Applied Mechanics and Engineering, 1998, 166, 35-49.	6.6	104
111	Finite element methods for convection-diffusion problems using exponential splines on triangles. Computers and Mathematics With Applications, 1998, 35, 35-45.	2.7	21
112	Optimal Approximability of Solutions of Singularly Perturbed Two-Point Boundary Value Problems. SIAM Journal on Numerical Analysis, 1997, 34, 1808-1816.	2.3	10
113	The midpoint upwind scheme. Applied Numerical Mathematics, 1997, 23, 361-374.	2.1	123
114	EFFICIENT GENERATION OF ORIENTED MESHES FOR SOLVING CONVECTION-DIFFUSION PROBLEMS. International Journal for Numerical Methods in Engineering, 1997, 40, 565-576.	2.8	17
115	A Uniformly Convergent Galerkin Method on a Shishkin Mesh for a Convection-Diffusion Problem. Journal of Mathematical Analysis and Applications, 1997, 214, 36-54.	1.0	108
116	A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with multiple solutions. Mathematics of Computation, 1996, 65, 1085-1110.	2.1	18
117	Linear enhancements of the streamline diffusion method for convection-diffusion problems. Computers and Mathematics With Applications, 1996, 32, 29-42.	2.7	10
118	Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, 1996, , .	0.2	609
119	An almost fourth order uniformly convergent difference scheme for a semilinear singularly perturbed reaction-diffusion problem. Numerische Mathematik, 1995, 70, 487-500.	1.9	25
120	A nonconforming finite element method for a singularly perturbed boundary value problem. Computing (Vienna/New York), 1995, 54, 1-25.	4.8	8
121	Necessary L2-uniform convergence conditions for difference schemes for two-dimensional convection-diffusion problems. Computers and Mathematics With Applications, 1995, 29, 45-53.	2.7	14
122	Finite-element methods for singularly perturbed high-order elliptic two-point boundary value problems. I: reaction-diffusion-type problems. IMA Journal of Numerical Analysis, 1995, 15, 117-139.	2.9	56
123	Finite element methods on piecewise equidistant meshes for interior turning point problems. Numerical Algorithms, 1994, 8, 111-129.	1.9	23
124	A streamline diffusion finite element method on a shishkin mesh for a convection-diffusion problem. Milan Journal of Mathematics, 1994, 64, 129-140.	0.1	0
125	Finite element analysis of an exponentially fitted non-lumped scheme for advection-diffusion equations. Applied Numerical Mathematics, 1994, 15, 375-393.	2.1	2
126	A Comparison of Uniformly Convergent Difference Schemes for Two-Dimensional Convection—Diffusion Problems. Journal of Computational Physics, 1993, 105, 24-32.	3.8	37

#	Article	IF	CITATIONS
127	Finite element analysis of exponentially fitted Lumped schemes for time-dependent convection-diffusion problems. Numerische Mathematik, 1993, 66, 347-371.	1.9	15
128	A globally uniformly convergent finite element method for a singularly perturbed elliptic problem in two dimensions. Mathematics of Computation, 1991, 57, 47-47.	2.1	43
129	An analysis of a singularly perturbed two-point boundary value problem using only finite element techniques. Mathematics of Computation, 1991, 56, 663-675.	2.1	26
130	A Globally Uniformly Convergent Finite Element Method for a Singularly Perturbed Elliptic Problem in Two Dimensions. Mathematics of Computation, 1991, 57, 47.	2.1	43
131	Uniformly convergent difference schemes for singularly perturbed parabolic diffusion-convection problems without turning points. Numerische Mathematik, 1989, 55, 521-544.	1.9	48
132	An Adaptive Uniformly Convergent Numerical Method for a Semilinear Singular Perturbation Problem. SIAM Journal on Numerical Analysis, 1989, 26, 442-455.	2.3	10
133	Numerical methods for time-dependent convection-diffusion equations. Journal of Computational and Applied Mathematics, 1988, 21, 289-310.	2.0	58
134	L 1 andL ? Uniform convergence of a difference scheme for a semilinear singular perturbation problem. Numerische Mathematik, 1987, 50, 519-531.	1.9	14
135	A Uniformly Accurate Finite Element Method for a Singular Perturbation Problem in Conservative Form. SIAM Journal on Numerical Analysis, 1986, 23, 369-375.	2.3	24
136	A Uniformly Accurate Finite-Element Method for a Singularly Perturbed One-Dimensional Reaction-Diffusion Problem. Mathematics of Computation, 1986, 47, 555.	2.1	46
137	An analysis of a superconvergence result for a singularly perturbed boundary value problem. Mathematics of Computation, 1986, 46, 81-92.	2.1	4
138	A finite element method for a singularly perturbed boundary value problem. Numerische Mathematik, 1986, 50, 1-15.	1.9	47
139	An Analysis of a Superconvergence Result for a Singularly Perturbed Boundary Value Problem. Mathematics of Computation, 1986, 46, 81.	2.1	22
140	On the construction of sufficient refinements for computation of topological degree. Numerische Mathematik, 1981, 37, 453-462.	1.9	18
141	On faster convergence of the bisection method for all triangles. Mathematics of Computation, 1980, 35, 1195-1195.	2.1	43
142	On faster convergence of the bisection method for certain triangles. Mathematics of Computation, 1979, 33, 717-721.	2.1	31
143	An algorithm for numerical calculation of topological degree. Applicable Analysis, 1979, 9, 63-77.	1.3	23
144	A simplification of Stenger's topological degree formula. Numerische Mathematik, 1979, 33, 147-155.	1.9	19

#	Article	IF	CITATIONS
145	An N-Dimensional bisection method for solving systems of n equations in N unknowns. Applicable Analysis, 1979, 9, 295-296.	1.3	0
146	Research announcement an algorithm for numerical calculation of topical degree. Applicable Analysis, 1977, 6, 319-320.	1.3	3
147	Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind. IMA Journal of Numerical Analysis, 0, , dnw034.	2.9	3