Alolika Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8179510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proton-conductive membranes with percolated transport paths for aqueous redox flow batteries. Materials Today Nano, 2021, 13, 100100.	2.3	1
2	Functionalized Well-Aligned Channels Derived from Wood as a Convection-Enhanced Electrode for Aqueous Flow Batteries. ACS Applied Energy Materials, 2020, 3, 6249-6257.	2.5	19
3	Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€Performance Aqueous Flow Batteries. Advanced Functional Materials, 2019, 29, 1903192.	7.8	50
4	Recent advances in the selective membrane for aqueous redox flow batteries. Materials Today Nano, 2019, 7, 100044.	2.3	23
5	Stable and Highly Ion-Selective Membrane Made from Cellulose Nanocrystals for Aqueous Redox Flow Batteries. Nano Letters, 2019, 19, 8979-8989.	4.5	38
6	Aqueous Flow Batteries: Mass Transfer and Reaction Kinetic Enhanced Electrode for Highâ€Performance Aqueous Flow Batteries (Adv. Funct. Mater. 43/2019). Advanced Functional Materials, 2019, 29, 1970297.	7.8	0
7	Abundant Organic Dye as an Anolyte for Aqueous Flow Battery with Multielectron Transfer. ACS Applied Energy Materials, 2019, 2, 7425-7437.	2.5	18
8	3D Printed Highâ€Performance Lithium Metal Microbatteries Enabled by Nanocellulose. Advanced Materials, 2019, 31, e1807313.	11.1	226
9	Tuning Chiral Nematic Pitch of Bioresourced Photonic Films via Coupling Organic Acid Hydrolysis. Advanced Materials Interfaces, 2019, 6, 1802010.	1.9	30
10	Metal-Free Aqueous Flow Battery with Novel Ultrafiltered Lignin as Electrolyte. ACS Sustainable Chemistry and Engineering, 2018, 6, 5394-5400.	3.2	52
11	Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS ₂ for High Rate Lithiumâ€ion Batteries. Advanced Energy Materials, 2018, 8, 1702779.	10.2	181
12	Lithiumâ€Ion Batteries: Ion Transport Nanotube Assembled with Vertically Aligned Metallic MoS ₂ for High Rate Lithiumâ€Ion Batteries (Adv. Energy Mater. 15/2018). Advanced Energy Materials, 2018, 8, 1870071.	10.2	4
13	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. Small, 2018, 14, e1800640.	5.2	218
14	Freestanding Metallic 1T MoS ₂ with Dual Ion Diffusion Paths as High Rate Anode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2017, 27, 1702998.	7.8	265
15	Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage. Nano Letters, 2017, 17, 7897-7907.	4.5	46
16	Aligned and stable metallic MoS ₂ on plasma-treated mass transfer channels for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 25359-25367.	5.2	31
17	Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS ₂ . Nanoscale, 2017, 9, 11452-11462.	2.8	97
18	An ontological approach to engineering requirement representation and analysis. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2016, 30, 337-352.	0.7	2