Richard E Waugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178960/publications.pdf

Version: 2024-02-01

65

all docs

63 1,853 23
papers citations h-index

65

docs citations

h-index g-index

65
2827
times ranked citing authors

41

#	Article	IF	CITATIONS
1	Piezo1 regulates mechanotransductive release of ATP from human RBCs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11783-11788.	7.1	156
2	A Microcantilever Device to Assess the Effect of Force on the Lifetime of Selectin-Carbohydrate Bonds. Biophysical Journal, 2001, 80, 668-682.	0.5	152
3	LFA-1 and Mac-1 Define Characteristically Different Intralumenal Crawling and Emigration Patterns for Monocytes and Neutrophils In Situ. Journal of Immunology, 2010, 185, 7057-7066.	0.8	150
4	A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Annals of Biomedical Engineering, 1996, 24, 595-605.	2.5	129
5	Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. Journal of Experimental Medicine, 2012, 209, 1349-1362.	8.5	115
6	Physical measurements of bilayer-skeletal separation forces. Annals of Biomedical Engineering, 1995, 23, 308-321.	2.5	88
7	Passive Mechanical Behavior of Human Neutrophils: Effects of Colchicine and Paclitaxel. Biophysical Journal, 1998, 74, 3282-3291.	0.5	82
8	Outside-In Signal Transmission by Conformational Changes in Integrin Mac-1. Journal of Immunology, 2009, 183, 6460-6468.	0.8	68
9	Activated Integrin VLA-4 Localizes to the Lamellipodia and Mediates T Cell Migration on VCAM-1. Journal of Immunology, 2009, 183, 359-369.	0.8	64
10	Membrane instability in late-stage erythropoiesis. Blood, 2001, 97, 1869-1875.	1.4	50
11	Micromechanical Tests of Adhesion Dynamics between Neutrophils and Immobilized ICAM-1. Biophysical Journal, 2004, 86, 1223-1233.	0.5	49
12	Surface area and volume changes during maturation of reticulocytes in the circulation of the baboon. Translational Research, 1997, 129, 527-535.	2.3	48
13	Highly permeable silicon membranes for shear free chemotaxis and rapid cell labeling. Lab on A Chip, 2014, 14, 2456-2468.	6.0	47
14	Adaptation and survival of surface-deprived red blood cells in mice. American Journal of Physiology - Cell Physiology, 2000, 279, C970-C980.	4.6	35
15	T Cell Receptor Signaling Can Directly Enhance the Avidity of CD28 Ligand Binding. PLoS ONE, 2014, 9, e89263.	2.5	33
16	Fractional occurrence of defects in membranes and mechanically driven interleaflet phospholipid transport. Physical Review E, 2001, 64, 051913.	2.1	30
17	Ultrathin Dualâ€Scale Nano―and Microporous Membranes for Vascular Transmigration Models. Small, 2019, 15, e1804111.	10.0	30
18	Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties. Cell Motility, 1983, 3, 609-622.	1.8	29

#	Article	IF	CITATIONS
19	Cell Adhesion Molecule Distribution Relative to Neutrophil Surface Topography Assessed by TIRFM. Biophysical Journal, 2009, 97, 379-387.	0.5	28
20	Adhesion Between Human Neutrophils and Immobilized Endothelial Ligand Vascular Cell Adhesion Molecule 1: Divalent Ion Effects. Biophysical Journal, 2009, 96, 276-284.	0.5	26
21	Opposing roles for RhoH GTPase during T-cell migration and activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10474-10479.	7.1	26
22	Signaling and Dynamics of Activation of LFA-1 and Mac-1 by Immobilized IL-8. Cellular and Molecular Bioengineering, 2010, 3, 106-116.	2.1	25
23	Integral Protein Linkage and the Bilayer-Skeletal Separation Energy in Red Blood Cells. Biophysical Journal, 2008, 95, 1826-1836.	0.5	24
24	Nanoscale physicochemical properties of chain†and stepâ€growth polymerized PEG hydrogels affect cellâ€material interactions. Journal of Biomedical Materials Research - Part A, 2017, 105, 1112-1122.	4.0	23
25	Immobilized IL-8 Triggers Phagocytosis and Dynamic Changes in Membrane Microtopology in Human Neutrophils. Annals of Biomedical Engineering, 2015, 43, 2207-2219.	2.5	22
26	Membrane Mobility of \hat{l}^2 2 Integrins and Rolling Associated Adhesion Molecules in Resting Neutrophils. Biophysical Journal, 2008, 95, 4934-4947.	0.5	21
27	A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Biomechanics and Modeling in Mechanobiology, 2016, 15, 745-758.	2.8	21
28	Optical Control of CD8+ T Cell Metabolism and Effector Functions. Frontiers in Immunology, 2021, 12, 666231.	4.8	21
29	Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion. Biophysical Journal, 2020, 118, 1564-1575.	0.5	20
30	Quantifying the Mechanical Properties of the Endothelial Glycocalyx with Atomic Force Microscopy. Journal of Visualized Experiments, 2013, , e50163.	0.3	19
31	Bmi-1 Regulates Extensive Erythroid Self-Renewal. Stem Cell Reports, 2015, 4, 995-1003.	4.8	19
32	Changes in endothelial glycocalyx layer protective ability after inflammatory stimulus. American Journal of Physiology - Cell Physiology, 2021, 320, C216-C224.	4.6	17
33	Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine-Induced Neutrophil Spreading. Biophysical Journal, 2014, 107, 1302-1312.	0.5	16
34	Finite element modeling to analyze TEER values across silicon nanomembranes. Biomedical Microdevices, 2018, 20, 11.	2.8	16
35	Microvascular Mimetics for the Study of Leukocyte–Endothelial Interactions. Cellular and Molecular Bioengineering, 2020, 13, 125-139.	2.1	16
36	Development of membrane mechanical function during terminal stages of primitive erythropoiesis in mice. Experimental Hematology, 2013, 41, 398-408.e2.	0.4	15

3

#	Article	IF	CITATIONS
37	Inhibition of Na+/H+exchanger enhances low pH-induced L-selectin shedding and \hat{l}^2 2-integrin surface expression in human neutrophils. American Journal of Physiology - Cell Physiology, 2008, 295, C1454-C1463.	4.6	14
38	Circulating primitive erythroblasts establish a functional, protein 4.1R-dependent cytoskeletal network prior to enucleating. Scientific Reports, 2017, 7, 5164.	3.3	13
39	Endothelial cell apicobasal polarity coordinates distinct responses to luminally versus abluminally delivered TNF-α in a microvascular mimetic. Integrative Biology (United Kingdom), 2020, 12, 275-289.	1.3	12
40	Dynamics of Increased Neutrophil Adhesion to ICAM-1 after Contacting Immobilized IL-8. Annals of Biomedical Engineering, 2006, 34, 1553-1563.	2.5	9
41	Active Site Formation, Not Bond Kinetics, Limits Adhesion Rate between Human Neutrophils and Immobilized Vascular Cell Adhesion Molecule 1. Biophysical Journal, 2009, 96, 268-275.	0.5	8
42	Constitutive Model of Erythrocyte Membranes with Distributions of Spectrin Orientations and Lengths. Biophysical Journal, 2020, 119, 2190-2204.	0.5	8
43	Molecular Accessibility in Relation to Cell Surface Topography and Compression Against a Flat Substrate. Biophysical Journal, 2009, 97, 369-378.	0.5	7
44	Halloysite Nanotube Coatings Suppress Leukocyte Spreading. Langmuir, 2015, 31, 13553-13560.	3.5	7
45	Red cell deformability in different vertebrate animals. Clinical Hemorheology and Microcirculation, 1992, 12, 649-656.	1.7	6
46	Chapter 1 Membrane Tethers. Current Topics in Membranes, 2009, 64, 3-24.	0.9	6
47	Activation of human neutrophil Mac-1 by anion substitution. Blood Cells, Molecules, and Diseases, 2009, 42, 177-184.	1.4	5
48	Dynamics of adhesion molecule domains on neutrophil membranes: surfing the dynamic cell topography. European Biophysics Journal, 2013, 42, 851-855.	2.2	5
49	Forty-Percent Area Strain in Red Cell Membranes?—Doubtful. Biophysical Journal, 2014, 106, 1834-1835.	0.5	4
50	BOND FORMATION DURING CELL COMPRESSION. , 2006, , 105-122.		4
51	A predictive model of nanoparticle capture on ultrathin nanoporous membranes. Journal of Membrane Science, 2021, 633, 119357.	8.2	3
52	Combined use of fluorescence microscopy and micromechanical measurement to assess cell and membrane properties. Pflugers Archiv European Journal of Physiology, 1996, 431, R271-R272.	2.8	1
53	A simple approach for bioactive surface calibration using evanescent waves. Journal of Microscopy, 2016, 262, 245-251.	1.8	1
54	Mechanics and Deformability of Hematocytes. , 2002, , 227-239.		1

#	Article	IF	CITATIONS
55	Development of Mechanical Stability in Late-Stage Embryonic Erythroid Cells: Insights From Fluorescence Imaged Micro-Deformation Studies. Frontiers in Physiology, 2021, 12, 761936.	2.8	1
56	The 2017 Young Innovators of Cellular and Molecular Bioengineering. Cellular and Molecular Bioengineering, 2017, 10, 339-340.	2.1	0
57	Dualâ€Scale Nanomembranes: Ultrathin Dualâ€Scale Nano―and Microporous Membranes for Vascular Transmigration Models (Small 6/2019). Small, 2019, 15, 1970035.	10.0	0
58	The Megakaryocyte Lineage Arises in the Yolk Sac and Generates an Initial Wave of Large Embryonic Platelets in the Early Mammalian Embryo Blood, 2004, 104, 566-566.	1.4	0
59	Segregation of adhesion molecules during neutrophil crawling. FASEB Journal, 2006, 20, A648.	0.5	0
60	Macâ€1 activation by external anions, glutamate and glucuronate. FASEB Journal, 2007, 21, A1153.	0.5	0
61	Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels. Journal of Cell Biology, 2012, 197, i11-i11.	5.2	0
62	Forces Shaping an Erythrocyte., 1987,, 249-260.		0
63	Mechanics and Deformability of Hematocytes. The Electrical Engineering Handbook, 1999, , .	0.2	0