
Yao-Wu Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3444-E3451.	7.1	443
2	Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science, 2020, 369, 578-581.	12.6	240
3	No high Tibetan Plateau until the Neogene. Science Advances, 2019, 5, eaav2189.	10.3	193
4	Quantitative reconstruction of the Late Miocene monsoon climates of southwest China: A case study of the Lincang flora from Yunnan Province. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304, 318-327.	2.3	150
5	As old as the mountains: the radiations of the Ericaceae. New Phytologist, 2015, 207, 355-367.	7.3	150
6	Quantitative climate reconstructions of the late Miocene Xiaolongtan megaflora from Yunnan, southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 276, 80-86.	2.3	116
7	On the complexity of triggering evolutionary radiations. New Phytologist, 2015, 207, 313-326.	7.3	104
8	A Middle Eocene lowland humid subtropical "Shangri-La―ecosystem in central Tibet. Proceedings of the United States of America, 2020, 117, 32989-32995.	7.1	87
9	Paleoclimatic estimation reveals a weak winter monsoon in southwestern China during the late Miocene: Evidence from plant macrofossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 358-360, 19-26.	2.3	86
10	FOSSILS AND A LARGE MOLECULAR PHYLOGENY SHOW THAT THE EVOLUTION OF SPECIES RICHNESS, GENERIC DIVERSITY, AND TURNOVER RATES ARE DISCONNECTED. Evolution; International Journal of Organic Evolution, 2014, 68, 2821-2832.	2.3	70
11	Polyploidy promotes species diversification of <i>Allium</i> through ecological shifts. New Phytologist, 2020, 225, 571-583.	7.3	68
12	Fossil data support a pre-Cretaceous origin of flowering plants. Nature Ecology and Evolution, 2021, 5, 449-457.	7.8	59
13	Leaf physiognomy and climate: Are monsoon systems different?. Global and Planetary Change, 2011, 76, 56-62.	3.5	56
14	Post-Pliocene establishment of the present monsoonal climate in SW China: evidence from the late Pliocene Longmen megaflora. Climate of the Past, 2013, 9, 1911-1920.	3.4	56
15	Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 411, 208-215.	2.3	53
16	LEAF MARGIN ANALYSIS: A NEW EQUATION FROM HUMID TO MESIC FORESTS IN CHINA. Palaios, 2010, 25, 234-238.	1.3	52
17	Do Mediterranean-type ecosystems have a common history?-Insights from the Buckthorn family (Rhamnaceae). Evolution; International Journal of Organic Evolution, 2015, 69, 756-771.	2.3	49
18	The intensification of the East Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quaternary Research, 2013, 80, 316-325.	1.7	46

YAO-WU XING

#	Article	IF	CITATIONS
19	The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae. Scientific Reports, 2016, 6, 27259.	3.3	44
20	Testing the Biases in the Rich Cenozoic Angiosperm Macrofossil Record. International Journal of Plant Sciences, 2016, 177, 371-388.	1.3	44
21	Fossil-Informed Models Reveal a Boreotropical Origin and Divergent Evolutionary Trajectories in the Walnut Family (Juglandaceae). Systematic Biology, 2021, 71, 242-258.	5.6	37
22	A new Drynaria (Polypodiaceae) from the Upper Pliocene of Southwest China. Review of Palaeobotany and Palynology, 2011, 164, 132-142.	1.5	36
23	Diversification rate shifts in the Cape Floristic Region: The right traits in the right place at the right time. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 331-340.	2.7	35
24	Pinus prekesiya sp. nov. from the upper Miocene of Yunnan, southwestern China and its biogeographical implications. Review of Palaeobotany and Palynology, 2010, 160, 1-9.	1.5	33
25	Phylogeographic analysis reveals significant spatial genetic structure of Incarvillea sinensis as a product of mountain building. BMC Plant Biology, 2012, 12, 58.	3.6	32
26	A new Quercus species from the upper Miocene of southwestern China and its ecological significance. Review of Palaeobotany and Palynology, 2013, 193, 99-109.	1.5	31
27	Oligocene climate signals and forcings in Eurasia revealed by plant macrofossil and modelling results. Gondwana Research, 2018, 61, 115-127.	6.0	30
28	A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels. Annals of Botany, 2015, 115, 777-788.	2.9	26
29	First occurrence of Cedrelospermum (Ulmaceae) in Asia and its biogeographic implications. Journal of Plant Research, 2015, 128, 747-761.	2.4	24
30	The earliest fossil bamboos of China (middle Miocene, Yunnan) and their biogeographical importance. Review of Palaeobotany and Palynology, 2013, 197, 253-265.	1.5	23
31	Oligocene <i>Limnobiophyllum</i> (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. Journal of Systematic Palaeontology, 2020, 18, 415-431.	1.5	22
32	Modern Geographical Distribution of Tsuga and Its Climatic Conditions in the Asian Monsoon Region. Acta Botanica Yunnanica, 2010, 31, 389-398.	0.1	21
33	The disappearance of Metasequoia (Cupressaceae) after the middle Miocene in Yunnan, Southwest China: Evidences for evolutionary stasis and intensification of the Asian monsoon. Review of Palaeobotany and Palynology, 2019, 264, 64-74.	1.5	20
34	The <scp>C</scp> enozoic biogeographical evolution of woody angiosperms inferred from fossil distributions. Global Ecology and Biogeography, 2015, 24, 1290-1301.	5.8	19
35	The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau. Global and Planetary Change, 2022, 214, 103856.	3.5	18
36	New fossil endocarps of Sambucus (Adoxaceae) from the upper Pliocene in SW China. Review of Palaeobotany and Palynology, 2012, 171, 152-163.	1.5	16

YAO-WU XING

#	Article	IF	CITATIONS
37	A new Tsuga species from the upper Miocene of Yunnan, southwestern China and its palaeogeographic significance. Palaeoworld, 2013, 22, 159-167.	1.1	16
38	The diversification of the northern temperate woody flora – A case study of the Elm family (Ulmaceae) based on phylogenomic and paleobotanical evidence. Journal of Systematics and Evolution, 2022, 60, 728-746.	3.1	16
39	An early Oligocene occurrence of the palaeoendemic genus Dipteronia (Sapindaceae) from Southwest China. Review of Palaeobotany and Palynology, 2018, 249, 16-23.	1.5	15
40	Miocene Ulmus fossil fruits from Southwest China and their evolutionary and biogeographic implications. Review of Palaeobotany and Palynology, 2018, 259, 198-206.	1.5	13
41	Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene. Science Bulletin, 2014, 59, 310-319.	1.7	11
42	Stomatal frequency of Quercus glauca from three material sources shows the same inverse response to atmospheric pCO2. Annals of Botany, 2019, 123, 1147-1158.	2.9	10
43	First discovery of Cucubalus (Caryophyllaceae) fossil, and its biogeographical and ecological implications. Review of Palaeobotany and Palynology, 2013, 190, 41-47.	1.5	9
44	Extensive Miocene speciation in and out of Indochina: The biogeographic history of <i>Typhonium sensu stricto</i> (Araceae) and its implication for the assembly of Indochina flora. Journal of Systematics and Evolution, 2021, 59, 419-428.	3.1	7
45	Rubus (Rosaceae) diversity in the late Pliocene of Yunnan, southwestern China. Geobios, 2015, 48, 439-448.	1.4	6
46	Rupelian Kazakhstan floras in the context of early Oligocene climate and vegetation in Central Asia. Terra Nova, 2021, 33, 383-399.	2.1	3
47	Comparative phylogeography of Acanthocalyx (Caprifoliaceae) reveals distinct genetic structures in the Himalaya–Hengduan Mountains. Alpine Botany, 0, , 1.	2.4	3
48	Diploid and Tetraploid Distribution of <i>Allium wallichii</i> Kunth (Ailiaceae) in the Yunnan-Guizhou Plateau. Zhi Wu Ke Xue Xue Bao, 2011, 29, 50-57.	0.1	3
49	Fraxinus L. (Oleaceae) fruits from the early Oligocene of Southwest China and their biogeographic implications. Fossil Imprint, 2021, 77, 287-298.	0.8	3
50	Taxonomic synopsis of Berberis (Berberidaceae) from the northern Hengduan mountains region in China, with descriptions of seven new species. Plant Diversity, 2022, 44, 505-517.	3.7	3
51	Adaptive responses drive the success of polyploid yellowcresses (Rorippa, Brassicaceae) in the Hengduan Mountains, a temperate biodiversity hotspot. Plant Diversity, 2022, 44, 455-467.	3.7	3
52	A new Rorippa species (Brassicaceae), R. hengduanshanensis, from the Hengduan Mountains in China . Phytotaxa, 2021, 480, 210-222.	0.3	2
53	The mating system and reproductive assurance of <i>Rorippa elata</i> (Brassicaceae) across latitude. Biodiversity Science, 2021, 29, 712-721.	0.6	1
54	Notes on the type specimen of Acanthocalyx delavayi (Caprifoliaceae) at Herbarium of the National Museum of Natural History in Paris (P) . Phytotaxa, 2020, 451, 90-92.	0.3	1

YAO-WU XING

#	Article	IF	CITATIONS
55	The complete chloroplast genome of <i>Androsace erecta</i> (Primulaceae) and its phylogenetic implication. Mitochondrial DNA Part B: Resources, 2021, 6, 1987-1989.	0.4	Ο
56	Erratum: Notes on the type specimen of Acanthocalyx delavayi (Caprifoliaceae) at Herbarium of the National Museum of Natural History in Paris (P) . Phytotaxa, 2020, 464, 116-116.	0.3	0
57	Introduction to the special issue "Tibetan tectonics and its effect on the longâ€ŧerm evolution of climate, vegetation and environmentâ€ŧ Terra Nova, 0, , .	2.1	0