
Jose Antonio Mendiola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A, 2010, 1217, 2495-2511.	3.7	575
2	Compressed fluids for the extraction of bioactive compounds. TrAC - Trends in Analytical Chemistry, 2013, 43, 67-83.	11.4	267
3	Use of compressed fluids for sample preparation: Food applications. Journal of Chromatography A, 2007, 1152, 234-246.	3.7	236
4	Advanced analysis of nutraceuticals. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 758-774.	2.8	231
5	Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chemistry, 2007, 102, 1357-1367.	8.2	142
6	Downstream processing of Isochrysis galbana: a step towards microalgal biorefinery. Green Chemistry, 2015, 17, 4599-4609.	9.0	140
7	Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. , 2012, , 55-98.		132
8	Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. Journal of Supercritical Fluids, 2014, 92, 75-83.	3.2	132
9	Sequential determination of fat- and water-soluble vitamins in green leafy vegetables during storage. Journal of Chromatography A, 2012, 1261, 179-188.	3.7	118
10	Separation and characterization of antioxidants fromSpirulina platensis microalga combining pressurized liquid extraction, TLC, and HPLC-DAD. Journal of Separation Science, 2005, 28, 2111-2119.	2.5	114
11	Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. Journal of Supercritical Fluids, 2018, 131, 99-105.	3.2	100
12	Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydrate Polymers, 2019, 217, 69-78.	10.2	100
13	Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta, 2013, 104, 44-52.	5.5	94
14	Expanded ethanol with CO2 and pressurized ethyl lactate to obtain fractions enriched in γ-Linolenic Acid from Arthrospira platensis (Spirulina). Journal of Supercritical Fluids, 2012, 62, 109-115.	3.2	93
15	Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 4607-4616.	3.7	80
16	Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques. Journal of Dairy Science, 2014, 97, 6719-6728.	3.4	80
17	Optimization of microwaveâ€assisted extraction and pressurized liquid extraction of phenolic compounds from <i>Moringa oleifera</i> leaves by multiresponse surface methodology. Electrophoresis, 2016, 37, 1938-1946.	2.4	78
18	Green downstream processing using supercritical carbon dioxide, CO2-expanded ethanol and pressurized hot water extractions for recovering bioactive compounds from Moringa oleifera leaves. Journal of Supercritical Fluids, 2016, 116, 90-100.	3.2	72

Jose Antonio Mendiola

#	Article	IF	CITATIONS
19	Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Research, 2017, 24, 111-121.	4.6	71
20	Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Applied Sciences (Switzerland), 2021, 11, 4897.	2.5	69
21	Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology, 2007, 224, 505-510.	3.3	65
22	Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids, 2008, 43, 484-489.	3.2	64
23	β-Carotene Isomer Composition of Sub- and Supercritical Carbon Dioxide Extracts. Antioxidant Activity Measurement. Journal of Agricultural and Food Chemistry, 2007, 55, 10585-10590.	5.2	61
24	Antimicrobial Activity of Sub- and Supercritical CO2 Extracts of the Green Alga Dunaliella salina. Journal of Food Protection, 2008, 71, 2138-2143.	1.7	60
25	Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts ofSpirulina platensismicroalga. Journal of Separation Science, 2005, 28, 1031-1038.	2.5	58
26	Gas expanded liquids and switchable solvents. Current Opinion in Green and Sustainable Chemistry, 2017, 5, 24-30.	5.9	58
27	Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. Journal of Supercritical Fluids, 2014, 92, 1-7.	3.2	57
28	Recovering Bioactive Compounds from Olive Oil Filter Cake by Advanced Extraction Techniques. International Journal of Molecular Sciences, 2014, 15, 16270-16283.	4.1	52
29	Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. Journal of Supercritical Fluids, 2012, 72, 205-212.	3.2	51
30	Comparison of extraction methods for selected carotenoids from macroalgae and the assessment of their seasonal/spatial variation. Innovative Food Science and Emerging Technologies, 2016, 37, 221-228.	5.6	51
31	Optimization of microwave-assisted extraction recovery of bioactive compounds from Origanum glandulosum and Thymus fontanesii. Industrial Crops and Products, 2019, 129, 395-404.	5.2	47
32	Pressurized Liquid Extraction. , 2020, , 375-398.		47
33	Fresh-cut aromatic herbs: Nutritional quality stability during shelf-life. LWT - Food Science and Technology, 2014, 59, 101-107.	5.2	45
34	Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity. Journal of Supercritical Fluids, 2016, 107, 581-589.	3.2	45
35	Pressurized liquid extraction of caffeine and catechins from green tea leaves using ethyl lactate, water and ethyl lactate + water mixtures. Food and Bioproducts Processing, 2015, 96, 106-112.	3.6	41
36	Optimization of the Aqueous Enzymatic Extraction of Oil from Iranian Wild Almond. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 985-992.	1.9	39

#	Article	IF	CITATIONS
37	Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods, 2020, 9, 620.	4.3	37
38	Profiling of different bioactive compounds in functional drinks by high-performance liquid chromatography. Journal of Chromatography A, 2008, 1188, 234-241.	3.7	36
39	Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract. Journal of Functional Foods, 2015, 13, 384-390.	3.4	33
40	Development of Pressurized Extraction Processes for Oil Recovery from Wild Almond (<i>Amygdalus) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf
41	Green foodomics. Towards a cleaner scientific discipline. TrAC - Trends in Analytical Chemistry, 2017, 96, 31-41.	11.4	33
42	Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innovative Food Science and Emerging Technologies, 2012, 16, 54-60.	5.6	32
43	Selective extraction of highâ€value phenolic compounds from distillation wastewater of basil (<i>Ocimum basilicum</i> L.) by pressurized liquid extraction. Electrophoresis, 2018, 39, 1884-1891.	2.4	29
44	Development of green extraction processes for <i>Nannochloropsis gaditana</i> biomass valorization. Electrophoresis, 2018, 39, 1875-1883.	2.4	25
45	Assessment of nutritional and metabolic profiles of pea shoots: The new ready-to-eat baby-leaf vegetable. Food Research International, 2014, 58, 105-111.	6.2	24
46	Design of Natural Food Antioxidant Ingredients through a Chemometric Approach. Journal of Agricultural and Food Chemistry, 2010, 58, 787-792.	5.2	23
47	Copaifera langsdorffii supercritical fluid extraction: Chemical and functional characterization by LC/MS and in vitro assays. Journal of Supercritical Fluids, 2015, 100, 86-96.	3.2	23
48	Antimicrobial Effect of <i>Malpighia Punicifolia</i> and Extension of Water Buffalo Steak Shelf‣ife. Journal of Food Science, 2016, 81, M97-105.	3.1	23
49	Strategies for a cleaner new scientific discipline of green foodomics. TrAC - Trends in Analytical Chemistry, 2013, 52, 23-35.	11.4	21
50	Adsorbent-assisted supercritical CO2 extraction of carotenoids from Neochloris oleoabundans paste. Journal of Supercritical Fluids, 2016, 112, 7-13.	3.2	21

	opportunity for their valorization. LWT - Food Science and Technology, 2021, 146, 111654.			
52	Compressed CO ₂ Technologies for the Recovery of Carotenoid-Enriched Extracts from <i>Dunaliella salina</i> with Potential Neuroprotective Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 11413-11423.	6.7	20	

Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: An

Phytochemical and Functional Characterization of Phenolic Compounds from Cowpea (Vigna) Tj ETQq1 1 0.784314 rgBT /Overlock 10

21

5.2

#	Article	IF	CITATIONS
55	Bioprospecting of cyanobacterium in Chilean coastal desert, Geitlerinema sp. molecular identification and pressurized liquid extraction of bioactive compounds. Food and Bioproducts Processing, 2021, 128, 227-239.	3.6	17
56	CHAPTER 6. Supercritical Fluid Extraction. RSC Green Chemistry, 2013, , 196-230.	0.1	16
57	Compressed fluids and phytochemical profiling tools to obtain and characterize antiviral and anti-inflammatory compounds from natural sources. TrAC - Trends in Analytical Chemistry, 2020, 129, 115942.	11.4	16
58	Enzyme-assisted supercritical fluid extraction of antioxidant isorhamnetin conjugates from Opuntia ficus-indica (L.) Mill. Journal of Supercritical Fluids, 2020, 158, 104713.	3.2	15
59	Subcritical water extraction of bioactive components from algae. , 2013, , 534-560.		14
60	Supercritical CO2 enzyme hydrolysis as a pretreatment for the release of isorhamnetin conjugates from Opuntia ficus-indica (L.) Mill. Journal of Supercritical Fluids, 2018, 141, 21-28.	3.2	14
61	Phytosterol-rich compressed fluids extracts from Phormidium autumnale cyanobacteria with neuroprotective potential. Algal Research, 2021, 55, 102264.	4.6	14
62	Extraction and Mass Spectrometric Characterization of Terpenes Recovered from Olive Leaves Using a New Adsorbent-Assisted Supercritical CO2 Process. Foods, 2021, 10, 1301.	4.3	14
63	Pressurized Liquid Extraction of Pigments from Chlamydomonas sp. and Chemical Characterization by HPLC–MS/MS. Journal of Analysis and Testing, 2018, 2, 149-157.	5.1	12
64	Green food analysis: Current trends and perspectives. Current Opinion in Green and Sustainable Chemistry, 2021, 31, 100522.	5.9	12
65	Safety assessment of citrus and olive by-products using a sustainable methodology based on natural deep eutectic solvents. Journal of Chromatography A, 2022, 1669, 462922.	3.7	12
66	Pressurized green liquid extraction of betalains and phenolic compounds from Opuntia stricta var. Dillenii whole fruit: Process optimization and biological activities of green extracts. Innovative Food Science and Emerging Technologies, 2022, 80, 103066.	5.6	11
67	Supercritical Fluid Extraction. , 2014, , .		10
68	In vitro uptake and immune functionality of digested Rosemary extract delivered through food grade vehicles. Food Research International, 2017, 97, 71-77.	6.2	10
69	Selective Extraction of Piceatannol from Passiflora edulis by-Products: Application of HSPs Strategy and Inhibition of Neurodegenerative Enzymes. International Journal of Molecular Sciences, 2021, 22, 6248.	4.1	10
70	Neuroprotective potential of terpenoid-rich extracts from orange juice by-products obtained by pressurized liquid extraction. Food Chemistry: X, 2022, 13, 100242.	4.3	10
71	Subcritical Water Extraction and Neoformation of Antioxidants. , 2017, , 109-130.		9
72	Application of Supercritical CO ₂ Extraction for the Elimination of Odorant Volatile Compounds from Winemaking Inactive Dry Yeast Preparation. Journal of Agricultural and Food Chemistry, 2010, 58, 3772-3778.	5.2	8

#	Article	IF	CITATIONS
73	Protein valorization from ora-pro-nobis leaves by compressed fluids biorefinery extractions. Innovative Food Science and Emerging Technologies, 2022, 76, 102926.	5.6	8
74	Screening for Bioactive Compounds from Algae. , 2013, , 833-872.		7
75	In-vivo edema inhibition of Hyoscyamus albus antioxidant extracts rich in calystegines. Industrial Crops and Products, 2016, 89, 316-322.	5.2	6
76	Exploring the Microalga Euglena cantabrica by Pressurized Liquid Extraction to Obtain Bioactive Compounds. Marine Drugs, 2020, 18, 308.	4.6	6
77	Optimization of Pressurized Liquid Extraction and In Vitro Neuroprotective Evaluation of Ammodaucus leucotrichus. Untargeted Metabolomics Analysis by UHPLC-MS/MS. Molecules, 2021, 26, 6951.	3.8	4
78	Extraction: Supercritical Fluid Extraction. , 2018, , .		3
79	Downstream Green Processes for Recovery of Bioactives from Algae. Grand Challenges in Biology and Biotechnology, 2019, , 399-425.	2.4	3

80 One-step sustainable extraction of Silymarin compounds of wild Algerian milk thistle (Silybum) Tj ETQq0 0 0 rgBT / 3.7 rlock 10 Tf 50 46

81	Green Processes in Foodomics. Gas-Expanded Liquids Extraction of Bioactives. , 2021, , 744-753.		1	
82	CHAPTER 17. Gas Expanded-liquids. RSC Green Chemistry, 2018, , 512-531.	0.1	1	