Andrea M Molod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178501/publications.pdf

Version: 2024-02-01

50 papers

11,261 citations

236833 25 h-index 50 g-index

58 all docs 58 docs citations

58 times ranked 12898 citing authors

#	Article	IF	CITATIONS
1	The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 2017, 30, 5419-5454.	1.2	4,520
2	MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 2011, 24, 3624-3648.	1.2	4,118
3	Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geoscientific Model Development, 2015, 8, 1339-1356.	1.3	822
4	Introduction to the SPARC Reanalysis Intercomparison ProjectÂ(S-RIP) and overview of the reanalysis systems. Atmospheric Chemistry and Physics, 2017, 17, 1417-1452.	1.9	276
5	Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis. Journal of Climate, 2017, 30, 1177-1196.	1.2	132
6	Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. Bulletin of the American Meteorological Society, 2020, 101, E608-E625.	1.7	124
7	Practice and philosophy of climate model tuning across six US modeling centers. Geoscientific Model Development, 2017, 10, 3207-3223.	1.3	100
8	Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geoscientific Model Development, 2014, 7, 1733-1766.	1.3	78
9	Structure and Dynamics of the Quasi-Biennial Oscillation in MERRA-2. Journal of Climate, 2016, 29, 5339-5354.	1.2	78
10	An assessment of upper troposphere and lower stratosphere water vapor in MERRA, MERRA2, and ECMWF reanalyses using Aura MLS observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,468.	1.2	72
11	Largeâ€Scale Atmospheric Transport in <scp>GEOS</scp> Replay Simulations. Journal of Advances in Modeling Earth Systems, 2017, 9, 2545-2560.	1.3	64
12	Improved boundary layer depth retrievals from MPLNET. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9870-9879.	1.2	53
13	GEOS‧2S Version 2: The GMAO Highâ€Resolution Coupled Model and Assimilation System for Seasonal Prediction. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031767.	1.2	52
14	Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation. Journals of the Atmospheric Sciences, 2016, 73, 3771-3783.	0.6	50
15	Frequency and impact of summertime stratospheric intrusions over Maryland during DISCOVERâ€AQ (2011): New evidence from NASA's GEOSâ€5 simulations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3687-3706.	1.2	49
16	Errors and improvements in the use of archived meteorological data for chemical transport modeling: an analysis using GEOS-ChemÂv 11 -01 driven by GEOS-5 meteorology. Geoscientific Model Development, 2018, 11, 305-319.	1.3	49
17	Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 3019-3044.	1.3	47
18	Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS-5 Model. Journal of Climate, 2015, 28, 551-573.	1,2	45

#	Article	IF	CITATIONS
19	Comparison of GEOS-5 AGCM planetary boundary layer depths computed with various definitions. Atmospheric Chemistry and Physics, 2014, 14, 6717-6727.	1.9	42
20	The Climatology of Parameterized Physical Processes in the GEOS-1 GCM and Their Impact on the GEOS-1 Data Assimilation System. Journal of Climate, 1996, 9, 764-785.	1.2	37
21	Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model. Journal of Climate, 2012, 25, 8341-8352.	1.2	37
22	Estimating Planetary Boundary Layer Heights from NOAA Profiler Network Wind Profiler Data. Journal of Atmospheric and Oceanic Technology, 2015, 32, 1545-1561.	0.5	36
23	An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2481-2495.	1.0	35
24	Direct estimation of the global distribution of vertical velocity within cirrus clouds. Scientific Reports, 2017, 7, 6840.	1.6	33
25	A global assessment of the mosaic approach to modeling land surface heterogeneity. Journal of Geophysical Research, 2002, 107, ACL 9-1.	3 . 3	30
26	Assessing the Grellâ€Freitas Convection Parameterization in the <scp>NASA GEOS</scp> Modeling System. Journal of Advances in Modeling Earth Systems, 2018, 10, 1266-1289.	1.3	29
27	Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: insights from MERRA-2. Environmental Research Letters, 2016, 11, 024002.	2.2	26
28	Differences in tropical high clouds among reanalyses: origins and radiative impacts. Atmospheric Chemistry and Physics, 2020, 20, 8989-9030.	1.9	26
29	Local Airâ€ S ea Interactions at Ocean Mesoscale and Submesoscale in a Western Boundary Current. Geophysical Research Letters, 2022, 49, .	1.5	20
30	An evaluation of deep convective mixing in the Goddard Chemical Transport Model using International Satellite Cloud Climatology Project cloud parameters. Journal of Geophysical Research, 1997, 102, 25467-25476.	3.3	19
31	Impact of planetary boundary layer turbulence on model climate and tracer transport. Atmospheric Chemistry and Physics, 2015, 15, 7269-7286.	1.9	16
32	The impact of limiting ocean roughness on GEOSâ€5 AGCM tropical cyclone forecasts. Geophysical Research Letters, 2013, 40, 411-416.	1.5	14
33	Subseasonalâ€to‧easonal Hindcast Skill Assessment of Ridging Events Related to Drought Over the Western United States. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033655.	1.2	12
34	Satellite Sea Surface Salinity Observations Impact on El Ni $\tilde{A}\pm o/S$ outhern Oscillation Predictions: Case Studies From the NASA GEOS Seasonal Forecast System. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015788.	1.0	12
35	Convective Entrainment Rates Estimated From Aura CO and CloudSat/CALIPSO Observations and Comparison With GEOSâ€5. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9796-9807.	1.2	11
36	Connections between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air–Sea Roughness. Journals of the Atmospheric Sciences, 2013, 70, 2137-2151.	0.6	10

#	Article	IF	Citations
37	Quantitative Sensitivity Analysis of Physical Parameterizations for Cases of Deep Convection in the NASA GEOS-5. Journal of Climate, 2016, 29, 455-479.	1.2	10
38	Threeâ€toâ€Sixâ€Day Air–Sea Oscillation in Models and Observations. Geophysical Research Letters, 2020, 47, e2019GL085837.	1.5	10
39	The Impact of SST-Forced and Unforced Teleconnections on 2015/16 El Niño Winter Precipitation over the Western United States. Journal of Climate, 2018, 31, 5825-5844.	1.2	9
40	Annual Cycle of Planetary Boundary Layer Heights Estimated From Wind Profiler Network Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6207-6221.	1.2	9
41	Using a Simple Water Balance Framework to Quantify the Impact of Soil Moisture Initialization on Subseasonal Evapotranspiration and Air Temperature Forecasts. Journal of Hydrometeorology, 2020, 21, 1705-1722.	0.7	9
42	Consequences of different air-sea feedbacks on ocean using MITgcm and MERRA-2 forcing: Implications for coupled data assimilation systems. Ocean Modelling, 2018, 132, 91-111.	1.0	5
43	Seasonal Prediction of the Quasiâ€Biennial Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
44	Representation of Tropical Cyclones by the Modern-Era Retrospective Analysis for Research and Applications Version 2. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57, 35-49.	1.3	4
45	Impacts of the Eruption of Mount Pinatubo on Surface Temperatures and Precipitation Forecasts With the NASA GEOS Subseasonalâ€toâ€5easonal System. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034830.	1.2	4
46	Seasonality in Prediction Skill of the Maddenâ€Julian Oscillation and Associated Dynamics in Version 2 of NASA's GEOSâ€52S Forecast System. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034961.	1.2	4
47	To What Extent Biomass Burning Aerosols Impact South America Seasonal Climate Predictions?. Geophysical Research Letters, 2020, 47, e2020GL088096.	1.5	3
48	Asymmetry in Subseasonal Surface Air Temperature Forecast Error with Respect to Soil Moisture Initialization. Journal of Hydrometeorology, 2021, 22, 2505-2519.	0.7	2
49	Earth system model parameter adjustment using a Green's functions approach. Geoscientific Model Development, 2022, 15, 2309-2324.	1.3	2
50	Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models. Climate Dynamics, 2022, 59, 2887-2913.	1.7	2