Maik Behrens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8178117/publications.pdf

Version: 2024-02-01

92 papers 6,118 citations

42 h-index 76 g-index

100 all docs

 $\begin{array}{c} 100 \\ \\ \text{docs citations} \end{array}$

100 times ranked

3576 citing authors

#	Article	IF	CITATIONS
1	Activation Spectra of Human Bitter Taste Receptors Stimulated with Cyclolinopeptides Corresponding to Fresh and Aged Linseed Oil. Journal of Agricultural and Food Chemistry, 2022, 70, 4382-4390.	2.4	12
2	Extra-Oral Taste Receptors—Function, Disease, and Perspectives. Frontiers in Nutrition, 2022, 9, 881177.	1.6	18
3	BitterMatch: recommendation systems for matching molecules with bitter taste receptors. Journal of Cheminformatics, 2022, 14, .	2.8	10
4	Bitter Sensing <i>TAS2R50</i> Mediates the <i>trans</i> -Resveratrol-Induced Anti-inflammatory Effect on Interleukin 6 Release in HGF-1 Cells in Culture. Journal of Agricultural and Food Chemistry, 2021, 69, 13339-13349.	2.4	20
5	Receptors Taste Receptors. , 2021, , 314-322.		o
6	Bitter taste receptors of the common vampire bat are functional and show conserved responses to metal ions <i>in vitro</i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210418.	1.2	4
7	Sweet taste of heavy water. Communications Biology, 2021, 4, 440.	2.0	19
8	Allyl Isothiocyanate: A TAS2R38 Receptor-Dependent Immune Modulator at the Interface Between Personalized Medicine and Nutrition. Frontiers in Immunology, 2021, 12, 669005.	2.2	12
9	Pharmacology of TAS1R2/TAS1R3 Receptors and Sweet Taste. Handbook of Experimental Pharmacology, 2021, , 1.	0.9	2
10	Metallic Sensationâ€"Just an Off-Flavor or a Biologically Relevant Sensing Pathway?. Journal of Agricultural and Food Chemistry, 2021, 69, 1775-1780.	2.4	7
11	At the Root of <i>T2R</i> Gene Evolution: Recognition Profiles of Coelacanth and Zebrafish Bitter Receptors. Genome Biology and Evolution, 2021, 13, .	1.1	17
12	Bitter taste receptors. Evolution, Medicine and Public Health, 2021, 9, 431-447.	1.1	29
13	Rational design of agonists for bitter taste receptor TAS2R14: from modeling to bench and back. Cellular and Molecular Life Sciences, 2020, 77, 531-542.	2.4	40
14	Structure-Function Analyses of Human Bitter Taste Receptors—Where Do We Stand?. Molecules, 2020, 25, 4423.	1.7	13
15	Editorial: Extra-Oral Taste Receptors: Function, Disease and Evolution. Frontiers in Physiology, 2020, 11, 607134.	1.3	5
16	Gastrointestinal taste receptors. Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27, 110-114.	1.2	8
17	Segregated Expression of ENaC Subunits in Taste Cells. Chemical Senses, 2020, 45, 235-248.	1.1	19
18	Sodium Imbalance in Mice Results Primarily in Compensatory Gene Regulatory Responses in Kidney and Colon, but Not in Taste Tissue. Nutrients, 2020, 12, 995.	1.7	7

#	Article	IF	CITATIONS
19	Numerous Compounds Orchestrate Coffee's Bitterness. Journal of Agricultural and Food Chemistry, 2020, 68, 6692-6700.	2.4	21
20	Bitter Taste. , 2020, , 231-246.		1
21	Taste receptor function. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 164, 173-185.	1.0	16
22	A role for taste receptors in (neuro)endocrinology?. Journal of Neuroendocrinology, 2019, 31, e12691.	1.2	31
23	Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2019, 20, 1402.	1.8	53
24	The human bitter taste receptor TAS2R7 facilitates the detection of bitter salts. Biochemical and Biophysical Research Communications, 2019, 512, 877-881.	1.0	35
25	Bitterless guaifenesin prodrugs—design, synthesis, characterization, in vitro kinetics, and bitterness studies. Chemical Biology and Drug Design, 2019, 93, 262-271.	1.5	14
26	Human Sweet Receptor T1R3 is Functional in Human Gastric Parietal Tumor Cells (HGT-1) and Modulates Cyclamate and Acesulfame K-Induced Mechanisms of Gastric Acid Secretion. Journal of Agricultural and Food Chemistry, 2018, 66, 4842-4852.	2.4	11
27	Structure–Function Relationships of Olfactory and Taste Receptors. Chemical Senses, 2018, 43, 81-87.	1.1	45
28	Vertebrate Bitter Taste Receptors: Keys for Survival in Changing Environments. Journal of Agricultural and Food Chemistry, 2018, 66, 2204-2213.	2.4	54
29	Bitter substances from plants used in traditional Chinese medicine exert biased activation of human bitter taste receptors. Chemical Biology and Drug Design, 2018, 91, 422-433.	1.5	45
30	Expression profiling of Tas2r genes reveals a complex pattern along the mouse GI tract and the presence of Tas $2r131$ in a subset of intestinal Paneth cells. Cellular and Molecular Life Sciences, 2018, 75, 49-65.	2.4	33
31	Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.	2.4	65
32	Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors. Frontiers in Molecular Biosciences, 2018, 5, 6.	1.6	17
33	Reengineering the ligand sensitivity of the broadly tuned human bitter taste receptor TAS2R14. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2162-2173.	1.1	47
34	Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Molecular Metabolism, 2018, 16, 76-87.	3.0	78
35	Probing the Evolutionary History of Human Bitter Taste Receptor Pseudogenes by Restoring Their Function. Molecular Biology and Evolution, 2017, 34, 1587-1595.	3.5	15
36	Blends of Non-caloric Sweeteners Saccharin and Cyclamate Show Reduced Off-Taste due to TAS2R Bitter Receptor Inhibition. Cell Chemical Biology, 2017, 24, 1199-1204.e2.	2.5	63

#	Article	IF	Citations
37	Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6260-E6269.	3.3	74
38	Genetic Labeling of Car4-expressing Cells Reveals Subpopulations of Type III Taste Cells. Chemical Senses, 2017, 42, 747-758.	1.1	23
39	From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds. Molecules, 2017, 22, 821.	1.7	25
40	Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case. Scientific Reports, 2017, 7, 8223.	1.6	27
41	G Protein–Coupled Taste Receptors. , 2016, , 227-244.		8
42	Probing the Binding Pocket of the Broadly Tuned Human Bitter Taste Receptor TAS2R14 by Chemical Modification of Cognate Agonists. Chemical Biology and Drug Design, 2016, 88, 66-75.	1.5	53
43	Comprehensive Analysis of Mouse Bitter Taste Receptors Reveals Different Molecular Receptive Ranges for Orthologous Receptors in Mice and Humans. Journal of Biological Chemistry, 2016, 291, 15358-15377.	1.6	171
44	Comparing Class AÂGPCRs to bitter taste receptors. Methods in Cell Biology, 2016, 132, 401-427.	0.5	80
45	Copy Number Variation in <i>TAS2R < i>Bitter Taste Receptor Genes: Structure, Origin, and Population Genetics. Chemical Senses, 2016, 41, 649-659.</i>	1.1	25
46	Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception. PLoS Genetics, 2015, 11, e1005530.	1.5	52
47	Ligand Recognition of Taste Receptors. ACS Symposium Series, 2015, , 183-192.	0.5	1
48	Evidence for a Transient Additional Ligand Binding Site in the TAS2R46 Bitter Taste Receptor. Journal of Chemical Theory and Computation, 2015, 11, 4439-4449.	2.3	70
49	Perinatal Administration of a Bitter Tastant Influences Gene Expression in Chicken Palate and Duodenum. Journal of Agricultural and Food Chemistry, 2014, 62, 12512-12520.	2.4	32
50	Taste Receptor Gene Expression Outside the Gustatory System. Topics in Medicinal Chemistry, 2014, , 1-34.	0.4	7
51	Bitter taste receptor agonists elicit Gâ€proteinâ€dependent negative inotropy in the murine heart. FASEB Journal, 2014, 28, 4497-4508.	0.2	72
52	The role of lipolysis in human orosensory fat perception. Journal of Lipid Research, 2014, 55, 870-882.	2.0	56
53	Tuning Properties of Avian and Frog Bitter Taste Receptors Dynamically Fit Gene Repertoire sizes. Molecular Biology and Evolution, 2014, 31, 3216-3227.	3.5	90
54	ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone. Journal of Biological Chemistry, 2014, 289, 19778-19788.	1.6	44

#	Article	IF	CITATIONS
55	The bitter pill: clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB Journal, 2014, 28, 1181-1197.	0.2	113
56	Amino Acids and Peptides Activate at Least Five Members of the Human Bitter Taste Receptor Family. Journal of Agricultural and Food Chemistry, 2013, 61, 53-60.	2.4	83
57	Genetic, Functional, and Phenotypic Diversity in TAS2R38-Mediated Bitter Taste Perception. Chemical Senses, 2013, 38, 475-484.	1.1	69
58	The Human Bitter Taste Receptor TAS2R10 Is Tailored to Accommodate Numerous Diverse Ligands. Journal of Neuroscience, 2013, 33, 201-213.	1.7	101
59	Major haplotypes of the human bitter taste receptor TAS2R41 encode functional receptors for chloramphenicol. Biochemical and Biophysical Research Communications, 2013, 435, 267-273.	1.0	58
60	Bitter taste receptor research comes of age: From characterization to modulation of TAS2Rs. Seminars in Cell and Developmental Biology, 2013, 24, 215-221.	2.3	108
61	A Subset of Mouse Colonic Goblet Cells Expresses the Bitter Taste Receptor Tas2r131. PLoS ONE, 2013, 8, e82820.	1.1	58
62	Coarse-Grained/Molecular Mechanics of the TAS2R38 Bitter Taste Receptor: Experimentally-Validated Detailed Structural Prediction of Agonist Binding. PLoS ONE, 2013, 8, e64675.	1.1	67
63	G Protein-Coupled Receptors in Human Fat Taste Perception. Chemical Senses, 2012, 37, 123-139.	1.1	190
64	Homology Model-Assisted Elucidation of Binding Sites in GPCRs. , 2012, 914, 179-205.		34
65	Immunohistochemical Detection of TAS2R38 Protein in Human Taste Cells. PLoS ONE, 2012, 7, e40304.	1.1	41
66	Receptor Agonism and Antagonism of Dietary Bitter Compounds. Journal of Neuroscience, 2011, 31, 14775-14782.	1.7	103
67	Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Human Molecular Genetics, 2011, 20, 3437-3449.	1.4	94
68	Gustatory and extragustatory functions of mammalian taste receptors. Physiology and Behavior, 2011, 105, 4-13.	1.0	194
69	Molecular biology of mammalian bitter taste receptors. A review Flavour and Fragrance Journal, 2011, 26, 260-268.	1.2	42
70	Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angewandte Chemie - International Edition, 2011, 50, 2220-2242.	7.2	146
71	Oral and Extraoral Bitter Taste Receptors. Results and Problems in Cell Differentiation, 2011, 52, 87-99.	0.2	82
72	Modulation of Bitter Taste Perception by a Small Molecule hTAS2R Antagonist. Current Biology, 2010, 20, 1104-1109.	1.8	142

#	Article	IF	CITATIONS
73	Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor. PLoS ONE, 2010, 5, e12394.	1.1	97
74	Structural requirements of bitter taste receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11110-11115.	3.3	156
75	The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chemical Senses, 2010, 35, 157-170.	1.1	907
76	Bitter Taste Receptors and Their Cells. Annals of the New York Academy of Sciences, 2009, 1170, 111-115.	1.8	16
77	The Human Bitter Taste Receptor hTAS2R50 Is Activated by the Two Natural Bitter Terpenoids Andrographolide and Amarogentin. Journal of Agricultural and Food Chemistry, 2009, 57, 9860-9866.	2.4	83
78	Mammalian Bitter Taste Perception. Results and Problems in Cell Differentiation, 2009, 47, 77-96.	0.2	60
79	Substrate Specificity of Rat DESC4, a Type II Transmembrane Serine Protease. Protein and Peptide Letters, 2009, 16, 1-6.	0.4	3
80	A Role of the Epithelial Sodium Channel in Human Salt Taste Transduction?. Chemosensory Perception, 2008, 1, 78-90.	0.7	54
81	Functions of human bitter taste receptors depend on Nâ€glycosylation. Journal of Neurochemistry, 2008, 106, 1138-1148.	2.1	52
82	Saccharin: Artificial Sweetener, Bitter Tastant, and Sweet Taste Inhibitor. ACS Symposium Series, 2008, , 230-240.	0.5	6
83	Gustatory Expression Pattern of the Human TAS2R Bitter Receptor Gene Family Reveals a Heterogenous Population of Bitter Responsive Taste Receptor Cells. Journal of Neuroscience, 2007, 27, 12630-12640.	1.7	180
84	Broad Tuning of the Human Bitter Taste Receptor hTAS2R46 to Various Sesquiterpene Lactones, Clerodane and Labdane Diterpenoids, Strychnine, and Denatonium. Journal of Agricultural and Food Chemistry, 2007, 55, 6236-6243.	2.4	172
85	Members of RTP and REEP Gene Families Influence Functional Bitter Taste Receptor Expression. Journal of Biological Chemistry, 2006, 281, 20650-20659.	1.6	118
86	Expression of Coxsackie-Adenovirus receptor (CAR) in the developing mouse olfactory system. Journal of Neurocytology, 2005, 34, 295-305.	1.6	11
87	Human Bitter Taste Perception. Chemical Senses, 2005, 30, i14-i15.	1.1	42
88	Bitter Taste Receptors for Saccharin and Acesulfame K. Journal of Neuroscience, 2004, 24, 10260-10265.	1.7	315
89	The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochemical and Biophysical Research Communications, 2004, 319, 479-485.	1.0	200
90	Identification of members of the <i>Bex</i> gene family as olfactory marker protein (OMP) binding partners. Journal of Neurochemistry, 2003, 86, 1289-1296.	2.1	32

#	Article	IF	CITATION
91	BMP mRNA and protein expression in the developing mouse olfactory system. Journal of Comparative Neurology, 2002, 451, 267-278.	0.9	48
92	Cloning of the αA-crystallin genes of a blind cave form and the epigean form of Astyanax fasciatus: a comparative analysis of structure, expression and evolutionary conservation. Gene, 1998, 216, 319-326.	1.0	38