
Johannes M Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8177461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translocation of Proteins into Mitochondria. Annual Review of Biochemistry, 2007, 76, 723-749.	5.0	1,243
2	A Disulfide Relay System in the Intermembrane Space of Mitochondria that Mediates Protein Import. Cell, 2005, 121, 1059-1069.	13.5	504
3	COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature, 1998, 391, 187-190.	13.7	374
4	Quality control of the mitochondrial proteome. Nature Reviews Molecular Cell Biology, 2021, 22, 54-70.	16.1	231
5	Disulfide Formation in the ER and Mitochondria: Two Solutions to a Common Process. Science, 2009, 324, 1284-1287.	6.0	227
6	Out of the ER—outfitters, escorts and guides. Trends in Cell Biology, 1999, 9, 5-7.	3.6	217
7	Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO Journal, 2003, 22, 6448-6457.	3.5	213
8	Realizing repeated quantum error correction in a distance-three surface code. Nature, 2022, 605, 669-674.	13.7	203
9	The disulfide relay system of mitochondria is connected to the respiratory chain. Journal of Cell Biology, 2007, 179, 389-395.	2.3	185
10	Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Letters, 1997, 418, 367-370.	1.3	161
11	Mitochondrial Disulfide Bond Formation Is Driven by Intersubunit Electron Transfer in Erv1 and Proofread by Glutathione. Molecular Cell, 2010, 37, 516-528.	4.5	158
12	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
13	Systematic Analysis of the Twin Cx9C Protein Family. Journal of Molecular Biology, 2009, 393, 356-368.	2.0	153
14	Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Letters, 2005, 579, 179-184.	1.3	151
15	Mitochondrial protein-induced stress triggers a global adaptive transcriptional programme. Nature Cell Biology, 2019, 21, 442-451.	4.6	146
16	Protein transport into mitochondria. Current Opinion in Microbiology, 2000, 3, 210-214.	2.3	144
17	Insertion into the mitochondrial inner membrane of a polytopic protein, the nuclear-encoded Oxa1p. EMBO Journal, 1997, 16, 2217-2226.	3.5	143
18	Genome-wide SWAp-Tag yeast libraries for proteome exploration. Nature Methods, 2018, 15, 617-622.	9.0	134

2

#	Article	IF	CITATIONS
19	The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondria11Edited by B. Holland. Journal of Molecular Biology, 2001, 307, 815-825.	2.0	133
20	An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science, 2018, 361, 1118-1122.	6.0	129
21	Biogenesis of cytochrome oxidase—Sophisticated assembly lines in the mitochondrial inner membrane. Gene, 2005, 354, 43-52.	1.0	127
22	Mba1, a membrane-associated ribosome receptor in mitochondria. EMBO Journal, 2006, 25, 1603-1610.	3.5	125
23	Control of protein synthesis in yeast mitochondria: The concept of translational activators. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 286-294.	1.9	123
24	The Intermembrane Space of Mitochondria. Antioxidants and Redox Signaling, 2010, 13, 1341-1358.	2.5	117
25	Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. Journal of Cell Biology, 2018, 217, 1369-1382.	2.3	116
26	Transport of Proteins into Mitochondria. Protein Journal, 2019, 38, 330-342.	0.7	116
27	Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nature Communications, 2015, 6, 6019.	5.8	115
28	The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nature Plants, 2019, 5, 1002-1011.	4.7	115
29	Tim17p Regulates the Twin Pore Structure and Voltage Gating of the Mitochondrial Protein Import Complex TIM23. Journal of Biological Chemistry, 2007, 282, 3584-3593.	1.6	110
30	Protein import and oxidative folding in the mitochondrial intermembrane space of intact mammalian cells. Molecular Biology of the Cell, 2013, 24, 2160-2170.	0.9	105
31	Import of small Tim proteins into the mitochondrial intermembrane space. EMBO Journal, 2003, 22, 4400-4408.	3.5	103
32	Mitochondrial Disulfide Relay: Redox-regulated Protein Import into the Intermembrane Space. Journal of Biological Chemistry, 2012, 287, 4426-4433.	1.6	103
33	A non-essential function for yeast frataxin in iron-sulfur cluster assembly. Human Molecular Genetics, 2002, 11, 2635-2643.	1.4	102
34	Chopped, trapped or tacked – protein translocation into the IMS of mitochondria. Trends in Biochemical Sciences, 2005, 30, 205-212.	3.7	101
35	Cbp3–Cbp6 interacts with the yeast mitochondrial ribosomal tunnel exit and promotes cytochrome <i>b</i> synthesis and assembly. Journal of Cell Biology, 2011, 193, 1101-1114.	2.3	91
36	Mba1, a Novel Component of the Mitochondrial Protein Export Machinery of the Yeast Saccharomyces cerevisiae. Journal of Cell Biology, 2001, 153, 1085-1096.	2.3	88

#	Article	IF	CITATIONS
37	Evolution of Mitochondrial Oxa Proteins from Bacterial YidC. Journal of Biological Chemistry, 2005, 280, 13004-13011.	1.6	84
38	The Oxa1 Protein Forms a Homooligomeric Complex and Is an Essential Part of the Mitochondrial Export Translocase in Neurospora crassa. Journal of Biological Chemistry, 2002, 277, 12846-12853.	1.6	81
39	Catch me if you can! Oxidative protein trapping in the intermembrane space of mitochondria. Journal of Cell Biology, 2007, 176, 559-563.	2.3	81
40	Atp23 biogenesis reveals a chaperone-like folding activity of Mia40 in the IMS of mitochondria. EMBO Journal, 2012, 31, 4348-4358.	3.5	80
41	Cytosolic Events in the Biogenesis of Mitochondrial Proteins. Trends in Biochemical Sciences, 2020, 45, 650-667.	3.7	79
42	Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces. Frontiers in Molecular Biosciences, 2017, 4, 83.	1.6	78
43	Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes. Genome Biology and Evolution, 2015, 7, 1235-1251.	1.1	77
44	Implementation of Conditional Phase Gates Based on Tunable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Z</mml:mi>ZZ</mml:mrow> Interactions. Physical Review Letters, 2020, 125, 240502.</mml:math 	2.9	76
45	Atp10p Assists Assembly of Atp6p into the F0 Unit of the Yeast Mitochondrial ATPase. Journal of Biological Chemistry, 2004, 279, 19775-19780.	1.6	75
46	Cooperation of Stop-Transfer and Conservative Sorting Mechanisms in Mitochondrial Protein Transport. Current Biology, 2010, 20, 1227-1232.	1.8	75
47	Pro- and Anti-Inflammatory Responses in Severe COVID-19-Induced Acute Respiratory Distress Syndrome—An Observational Pilot Study. Frontiers in Immunology, 2020, 11, 581338.	2.2	75
48	Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6656-6661.	3.3	73
49	Topogenesis of Cytochrome Oxidase Subunit II. Journal of Biological Chemistry, 1995, 270, 27079-27086.	1.6	72
50	The ADP Ribosylation Factor-Nucleotide Exchange Factors Gea1p and Gea2p Have Overlapping, but Not Redundant Functions in Retrograde Transport from the Golgi to the Endoplasmic Reticulum. Molecular Biology of the Cell, 2001, 12, 1035-1045.	0.9	71
51	Conserved N-terminal Negative Charges in the Tim17 Subunit of the TIM23 Translocase Play a Critical Role in the Import of Preproteins into Mitochondria. Journal of Biological Chemistry, 2005, 280, 7777-7785.	1.6	70
52	The zincâ€binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Reports, 2008, 9, 1107-1113.	2.0	70
53	The Oxa2 Protein ofNeurospora crassaPlays a Critical Role in the Biogenesis of Cytochrome Oxidase and Defines a Ubiquitous Subbranch of the Oxa1/YidC/Alb3 Protein Family. Molecular Biology of the Cell, 2004, 15, 1853-1861.	0.9	69
54	Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. British Journal of Nutrition, 2014, 112, 925-936.	1.2	67

#	Article	IF	CITATIONS
55	Community-based educational intervention improved the diversity of complementary diets in western Kenya: results from a randomized controlled trial. Public Health Nutrition, 2015, 18, 3406-3419.	1.1	67
56	How the Mitoprotein-Induced Stress Response Safeguards the Cytosol: A Unified View. Trends in Cell Biology, 2020, 30, 241-254.	3.6	66
57	Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends in Microbiology, 2003, 11, 74-79.	3.5	64
58	Proteins at the Polypeptide Tunnel Exit of the Yeast Mitochondrial Ribosome. Journal of Biological Chemistry, 2010, 285, 19022-19028.	1.6	62
59	Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. ELife, 2016, 5, .	2.8	60
60	The sulfhydryl oxidase Erv1 is a substrate of the Mia40-dependent protein translocation pathway. FEBS Letters, 2007, 581, 1098-1102.	1.3	59
61	Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Molecular Biology of the Cell, 2015, 26, 195-204.	0.9	59
62	The Membrane-bound GTPase Guf1 Promotes Mitochondrial Protein Synthesis under Suboptimal Conditions. Journal of Biological Chemistry, 2008, 283, 17139-17146.	1.6	58
63	The Disulfide Relay of the Intermembrane Space Oxidizes the Ribosomal Subunit Mrp10 on Its Transit into the Mitochondrial Matrix. Developmental Cell, 2014, 28, 30-42.	3.1	58
64	The Sec-independent Function of Escherichia coli YidC Is Evolutionary-conserved and Essential. Journal of Biological Chemistry, 2005, 280, 12996-13003.	1.6	56
65	Ribosome-binding Proteins Mdm38 and Mba1 Display Overlapping Functions for Regulation of Mitochondrial Translation. Molecular Biology of the Cell, 2010, 21, 1937-1944.	0.9	56
66	MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Research, 2014, 42, 8500-8515.	6.5	56
67	Redox-regulated dynamic interplay between Cox19 and the copper-binding protein Cox11 in the intermembrane space of mitochondria facilitates biogenesis of cytochrome <i>c</i> oxidase. Molecular Biology of the Cell, 2015, 26, 2385-2401.	0.9	56
68	Thiol switches in mitochondria: operation and physiological relevance. Biological Chemistry, 2015, 396, 465-482.	1.2	53
69	Proline residues of transmembrane domains determine the sorting of inner membrane proteins in mitochondria. Journal of Cell Biology, 2005, 170, 881-888.	2.3	52
70	Oxidation-driven protein import into mitochondria: Insights and blind spots. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 981-989.	1.4	50
71	Thiol oxidation in bacteria, mitochondria and chloroplasts: Common principles but three unrelated machineries?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 71-77.	1.9	49
72	A disulfide bond in the TIM23 complex is crucial for voltage gating and mitochondrial protein import. Journal of Cell Biology, 2016, 214, 417-431.	2.3	48

#	Article	IF	CITATIONS
73	The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Cell Reports, 2021, 35, 108936.	2.9	47
74	Evolution of YidC/Oxa1/Alb3 insertases: three independent gene duplications followed by functional specialization in bacteria, mitochondria and chloroplasts. Biological Chemistry, 2011, 392, 13-9.	1.2	46
75	Inaccurately Assembled Cytochrome <i>c</i> Oxidase Can Lead to Oxidative Stress-Induced Growth Arrest. Antioxidants and Redox Signaling, 2013, 18, 1597-1612.	2.5	43
76	Mrpl36 Is Important for Generation of Assembly Competent Proteins during Mitochondrial Translation. Molecular Biology of the Cell, 2009, 20, 2615-2625.	0.9	40
77	The Mitochondrial Oxidase Assembly Protein1 (Oxa1) Insertase Forms a Membrane Pore in Lipid Bilayers. Journal of Biological Chemistry, 2012, 287, 33314-33326.	1.6	40
78	From Endoplasmic Reticulum to Mitochondria: Absence of the Arabidopsis ATP Antiporter Endoplasmic Reticulum Adenylate Transporter1 Perturbs Photorespiration. Plant Cell, 2013, 25, 2647-2660.	3.1	39
79	The NADH Dehydrogenase Nde1 Executes Cell Death after Integrating Signals from Metabolism and Proteostasis on the Mitochondrial Surface. Molecular Cell, 2020, 77, 189-202.e6.	4.5	39
80	Biogenesis of Mitochondrial Proteins. Advances in Experimental Medicine and Biology, 2012, 748, 41-64.	0.8	38
81	A child feeding index is superior to WHO IYCF indicators in explaining length-for-age Z-scores of young children in rural Cambodia. Paediatrics and International Child Health, 2015, 35, 124-134.	0.3	38
82	Mean hemoglobin concentration after acute subarachnoid hemorrhage and the relation to outcome, mortality, vasospasm, and brain infarction. Journal of Clinical Neuroscience, 2015, 22, 530-534.	0.8	37
83	High Vâ€PPase activity is beneficial under high salt loads, but detrimental without salinity. New Phytologist, 2018, 219, 1421-1432.	3.5	37
84	Oxa1-Ribosome Complexes Coordinate the Assembly of Cytochrome c Oxidase in Mitochondria. Journal of Biological Chemistry, 2012, 287, 34484-34493.	1.6	36
85	Ecm10, a novel Hsp70 homolog in the mitochondrial matrix of the yeastSaccharomyces cerevisiae. FEBS Letters, 2000, 487, 307-312.	1.3	35
86	In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress. Biochemical and Biophysical Research Communications, 2010, 403, 114-119.	1.0	35
87	The Rubella Virus Capsid Protein Inhibits Mitochondrial Import. Journal of Virology, 2010, 84, 119-130.	1.5	34
88	Analysis of translating mitoribosome reveals functional characteristics of translation in mitochondria of fungi. Nature Communications, 2020, 11, 5187.	5.8	34
89	Protein Export across the Inner Membrane of Mitochondria. Journal of Biological Chemistry, 2004, 279, 2507-2512.	1.6	33
90	Redox Biology on the rise. Biological Chemistry, 2012, 393, 999-1004.	1.2	33

#	Article	IF	CITATIONS
91	Analysis of mitochondrial translation products in Vivo and in organello in yeast. Methods in Cell Biology, 2001, 65, 429-438.	0.5	32
92	The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates. Molecular Biology of the Cell, 2012, 23, 2292-2301.	0.9	30
93	Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biological Chemistry, 2021, 402, 289-297.	1.2	30
94	Analysis of protein-protein interactions in mitochondria by coimmunoprecipitation and chemical cross-linking. Methods in Cell Biology, 2001, 65, 217-230.	0.5	29
95	Three Approaches to One Problem: Protein Folding in the Periplasm, the Endoplasmic Reticulum, and the Intermembrane Space. Antioxidants and Redox Signaling, 2014, 21, 438-456.	2.5	27
96	Multiple mitochondrial thioesterases have distinct tissue and substrate specificity and CoA regulation, suggesting unique functional roles. Journal of Biological Chemistry, 2019, 294, 19034-19047.	1.6	27
97	The Membrane Insertase Oxa1 Is Required for Efficient Import of Carrier Proteins into Mitochondria. Journal of Molecular Biology, 2012, 423, 590-599.	2.0	26
98	Erv1 of Arabidopsis thaliana can directly oxidize mitochondrial intermembrane space proteins in the absence of redox-active Mia40. BMC Biology, 2017, 15, 106.	1.7	26
99	Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Molecular Biology of the Cell, 2016, 27, 3031-3039.	0.9	25
100	A variant in a <i>cis</i> -regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones. Human Mutation, 2017, 38, 649-657.	1.1	24
101	One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biology, 2020, 36, 101598.	3.9	24
102	Polarization- and frequency-tunable microwave circuit for selective excitation of nitrogen-vacancy spins in diamond. Applied Physics Letters, 2016, 109, .	1.5	23
103	Insertion of Bitopic Membrane Proteins into the Inner Membrane of Mitochondria Involves an Export Step from the Matrix. Journal of Biological Chemistry, 2002, 277, 21405-21413.	1.6	22
104	Sequential Processing of a Mitochondrial Tandem Protein: Insights into Protein Import in Schizosaccharomyces pombe. Eukaryotic Cell, 2006, 5, 997-1006.	3.4	22
105	The proteasome: friend and foe of mitochondrial biogenesis. FEBS Letters, 2021, 595, 1223-1238.	1.3	22
106	TheArabidopsis thalianachloroplast inner envelope protein ARTEMIS is a functional member of the Alb3/Oxa1/YidC family of proteins. FEBS Letters, 2004, 569, 89-93.	1.3	21
107	<i>Saccharomyces cerevisiae</i> Cox18 complements the essential Secâ€independent function of <i>Escherichia coli</i> YidC. FEBS Journal, 2007, 274, 5704-5713.	2.2	21
108	The Disulfide Relay of the Intermembrane Space of Mitochondria: An Oxygen‧ensing System?. Annals of the New York Academy of Sciences, 2008, 1147, 293-302.	1.8	21

#	Article	IF	CITATIONS
109	MINOS Is Plus: A Mitofilin Complex for Mitochondrial Membrane Contacts. Developmental Cell, 2011, 21, 599-600.	3.1	21
110	Oxidation and Reduction of Cysteines in the Intermembrane Space of Mitochondria: Multiple Facets of Redox Control. Antioxidants and Redox Signaling, 2010, 13, 1323-1326.	2.5	18
111	COVID-19 Induced Acute Respiratory Distress Syndrome—A Multicenter Observational Study. Frontiers in Medicine, 2020, 7, 599533.	1.2	18
112	The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Molecular Biology of the Cell, 2021, 32, 664-674.	0.9	18
113	Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO Journal, 2021, 40, e107913.	3.5	18
114	ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. International Journal of Molecular Sciences, 2021, 22, 9655.	1.8	18
115	The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria. PLoS Biology, 2022, 20, e3001380.	2.6	18
116	Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general. Microbial Cell, 2014, 1, 81-93.	1.4	17
117	Detection of Internal Matrix Targeting Signal-like Sequences (iMTS-Ls) in Mitochondrial Precursor Proteins Using the TargetP Prediction Tool. Bio-protocol, 2018, 8, e2474.	0.2	16
118	iMLP, a predictor for internal matrix targeting-like sequences in mitochondrial proteins. Biological Chemistry, 2021, 402, 937-943.	1.2	15
119	Mitochondrial targeting signals and mature peptides of 3-methylcrotonyl-CoA carboxylase. Biochemical and Biophysical Research Communications, 2005, 334, 939-946.	1.0	14
120	Import of ribosomal proteins into yeast mitochondria. Biochemistry and Cell Biology, 2014, 92, 489-498.	0.9	14
121	The intermembrane space protein Mix23 is a novel stress-induced mitochondrial import factor. Journal of Biological Chemistry, 2020, 295, 14686-14697.	1.6	14
122	Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. International Review of Cell and Molecular Biology, 2008, 268, 147-190.	1.6	13
123	Coi1 is a novel assembly factor of the yeast complex III–complex IV supercomplex. Molecular Biology of the Cell, 2017, 28, 2609-2622.	0.9	13
124	Analysis of Mitochondrial Protein Synthesis in Yeast. Methods in Molecular Biology, 2007, 372, 255-263.	0.4	13
125	In vitro import experiments with semi-intact cells suggest a role of the Sec61 paralog Ssh1 in mitochondrial biogenesis. Biological Chemistry, 2019, 400, 1229-1240.	1.2	12
126	Import of Proteins into Isolated Yeast Mitochondria. Methods in Molecular Biology, 2015, 1270, 37-50.	0.4	12

#	Article	IF	CITATIONS
127	Biodistribution and serologic response in SARS-CoV-2 induced ARDS: A cohort study. PLoS ONE, 2020, 15, e0242917.	1.1	12
128	Widespread use of unconventional targeting signals in mitochondrial ribosome proteins. EMBO Journal, 2022, 41, e109519.	3.5	12
129	Intracellular Parcel Service: Current Issues in Intracellular Membrane Trafficking. Methods in Molecular Biology, 2015, 1270, 1-12.	0.4	11
130	Voice alerting as a medical alarm modality for next-generation patient monitoring: a randomised international multicentre trial. British Journal of Anaesthesia, 2021, 127, 769-777.	1.5	11
131	West syndrome caused by homozygous variant in the evolutionary conserved gene encoding the mitochondrial elongation factor GUF1. European Journal of Human Genetics, 2016, 24, 1001-1008.	1.4	10
132	A Force-Generating Machine in the Plant's Powerhouse: A Pulling AAA-ATPase Motor Drives Protein Translocation into Chloroplasts. Plant Cell, 2018, 30, 2646-2647.	3.1	10
133	More than just a ticket canceller: the mitochondrial processing peptidase tailors complex precursor proteins at internal cleavage sites. Molecular Biology of the Cell, 2020, 31, 2657-2668.	0.9	10
134	Effects of an Animated Blood Clot Technology (Visual Clot) on the Decision-Making of Users Inexperienced in Viscoelastic Testing: Multicenter Trial. Journal of Medical Internet Research, 2021, 23, e27124.	2.1	9
135	Role of Breastfeeding and Complementary Food on Hemoglobin and Ferritin Levels in a Cambodian Cross-Sectional Sample of Children Aged 3 to 24 Months. PLoS ONE, 2016, 11, e0150750.	1.1	9
136	Mitoribosome oddities. Science, 2015, 348, 288-289.	6.0	8
137	The Potential of Liming to Improve Drought Tolerance of Norway Spruce [Picea abies (L.) Karst.]. Frontiers in Plant Science, 2019, 10, 382.	1.7	8
138	Clingy genes: Why were genes for ribosomal proteins retained in many mitochondrial genomes?. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148275.	0.5	8
139	<i>Leishmania</i> type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
140	Highlight: Dynamics of Thiol-Based Redox Switches. Biological Chemistry, 2015, 396, 385-387.	1.2	7
141	Development of the Mitochondrial Intermembrane Space Disulfide Relay Represents a Critical Step in Eukaryotic Evolution. Molecular Biology and Evolution, 2019, 36, 742-756.	3.5	7
142	The mitochondrial intermembrane space–facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Molecular Biology of the Cell, 2019, 30, 2681-2694.	0.9	5
143	Severe neurological complications in critically ill COVID-19 patients. Journal of Neurology, 2021, 268, 1576-1579.	1.8	5
144	The Role of the Mia40-Erv1 Disulfide Relay System in Import and Folding of Proteins of the Intermembrane Space of Mitochondria. The Enzymes, 2007, , 345-366.	0.7	4

#	Article	IF	CITATIONS
145	Analysis of Protein–Protein Interactions in Mitochondria. Methods in Cell Biology, 2007, 80, 743-759.	0.5	4
146	Putting a break on protein translocation: metabolic regulation of mitochondrial protein import. Molecular Microbiology, 2009, 72, 275-278.	1.2	4
147	Ups delivery to the intermembrane space of mitochondria: a novel affinity-driven protein import pathway. EMBO Journal, 2010, 29, 2859-2860.	3.5	4
148	Proteasomal degradation competes with Mia40-mediated import into mitochondria. BMC Biology, 2018, 16, 63.	1.7	4
149	Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1. Journal of Molecular Medicine, 2019, 97, 269-279.	1.7	4
150	Partial suppression of <scp>O</scp> xa1 mutants by mitochondriaâ€ŧargeted signal recognition particle provides insights into the evolution of the cotranslational insertion systems. FEBS Journal, 2013, 280, 904-915.	2.2	3
151	Escorted by chaperones: Sti1 helps to usher precursor proteins from the ribosome to mitochondria. FEBS Journal, 2016, 283, 3335-3337.	2.2	3
152	The Bacterial Membrane Insertase YidC Is a Functional Monomer and Binds Ribosomes in a Nascent Chain-Dependent Manner. Journal of Molecular Biology, 2013, 425, 4071-4073.	2.0	2
153	SLC26A7 protein is a chloride/bicarbonate exchanger and its abundance is osmolarity- and pH-dependent in renal epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183238.	1.4	2
154	Accessory signals in protein translocation. Aging, 2018, 10, 530-531.	1.4	2
155	Methionine on the rise: how mitochondria changed their codon usage. EMBO Journal, 2016, 35, 2066-2067.	3.5	1
156	Dynamics of thiol-based redox switches: redox at its peak!. Biological Chemistry, 2021, 402, 221-222.	1.2	1
157	Walter Neupert (1939–2019), a pioneer of mitochondrial biogenesis and morphology. EMBO Journal, 2019, 38, e103100.	3.5	0
158	Mitochondrial carriers set the epigenetic age. Nature Aging, 2021, 1, 755-756.	5.3	0
159	The Yeast AIF Homolog Nde1 Integrates Signals from Metabolism and Proteostasis on the Mitochondrial Surface and Executes Cell Death. SSRN Electronic Journal, O, , .	0.4	0
160	Mitochondria and friends – a special issue in honor of Walter Neupert (1939–2019). Biological Chemistry, 2020, 401, 643-644.	1.2	0