
Samuel Gyger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8177255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full-Stokes polarimetric measurements and imaging using a fractal superconducting nanowire single-photon detector. Optica, 2022, 9, 346.	4.8	13
2	Fractal Superconducting Nanowires Detect Infrared Single Photons with 84% System Detection Efficiency, 1.02 Polarization Sensitivity, and 20.8 ps Timing Resolution. ACS Photonics, 2022, 9, 1547-1553.	3.2	15
3	Current Crowding in Nanoscale Superconductors within the Ginzburg-Landau Model. Physical Review Applied, 2022, 17, .	1.5	7
4	Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS ₂ van der Waals Heterodevices. Nano Letters, 2021, 21, 1040-1046.	4.5	36
5	Progress on large-scale superconducting nanowire single-photon detectors. Applied Physics Letters, 2021, 118, .	1.5	38
6	Reconfigurable photonics with on-chip single-photon detectors. Nature Communications, 2021, 12, 1408.	5.8	68
7	Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters. ACS Photonics, 2021, 8, 1069-1076.	3.2	33
8	Superconducting nanowire single-photon detectors: A perspective on evolution, state-of-the-art, future developments, and applications. Applied Physics Letters, 2021, 118, .	1.5	124
9	Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide. Advanced Quantum Technologies, 2021, 4, 2100032.	1.8	28
10	On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots. ACS Photonics, 2021, 8, 2337-2344.	3.2	36
11	Efficient and versatile toolbox for analysis of time-tagged measurements. Journal of Instrumentation, 2021, 16, T08016.	0.5	4
12	Enhancing Si ₃ N ₄ Waveguide Nonlinearity with Heterogeneous Integration of Few-Layer WS ₂ . ACS Photonics, 2021, 8, 2713-2721.	3.2	20
13	Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS ₂ . ACS Photonics, 2021, 8, 669-677.	3.2	48
14	Magnetoconductance and photoresponse properties of disordered NbTiN films. Physical Review B, 2021, 104, .	1.1	12
15	Giant Rydberg excitons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml: mathvariant="normal">O</mml: </mml:msub></mml:mrow> probed by photoluminescence excitation spectroscopy. Physical Review B. 2021. 104.</mml:math 	mn>21.1	ml:ŋŋ>
16	Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm. Nano Letters, 2021, 21, 10501-10506.	4.5	22
17	GaAs Quantum Dot in a Parabolic Microcavity Tuned to ⁸⁷ Rb D ₁ . ACS Photonics, 2020, 7, 29-35.	3.2	6
18	Temporal array with superconducting nanowire single-photon detectors for photon-number resolution. Physical Review A, 2020, 102, .	1.0	4

SAMUEL GYGER

#	Article	IF	CITATIONS
19	Atomistic defects as single-photon emitters in atomically thin MoS2. Applied Physics Letters, 2020, 117, .	1.5	51
20	Superconducting Nanowire Devices for Light Detection at the Single-Photon Level. Proceedings (mdpi), 2020, 56, .	0.2	0
21	Dispersion engineering of superconducting waveguides for multi-pixel integration of single-photon detectors. APL Photonics, 2020, 5, 111301.	3.0	2
22	NbTiN thin films for superconducting photon detectors on photonic and two-dimensional materials. Applied Physics Letters, 2020, 116, .	1.5	25
23	Rydberg excitons in Cu2O microcrystals grown on a silicon platform. Communications Materials, 2020, 1, .	2.9	31
24	Reconfigurable frequency coding of triggered single photons in the telecom C–band. Optics Express, 2019, 27, 14400.	1.7	2
25	Strain-Tunable Quantum Integrated Photonics. Nano Letters, 2018, 18, 7969-7976.	4.5	57