Barbara Patricelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
2	Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature, 2017, 551, 67-70.	13.7	715
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
4	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
5	Science with e-ASTROGAM. Journal of High Energy Astrophysics, 2018, 19, 1-106.	2.4	177
6	The e-ASTROGAM mission. Experimental Astronomy, 2017, 44, 25-82.	1.6	167
7	Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 2013, 50-52, 26-32.	1.9	156
8	OBSERVATION OF SMALL-SCALE ANISOTROPY IN THE ARRIVAL DIRECTION DISTRIBUTION OF TeV COSMIC RAYS WITH HAWC. Astrophysical Journal, 2014, 796, 108.	1.6	71
9	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	2.1	70
10	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
11	THESEUS: A key space mission concept for Multi-Messenger Astrophysics. Advances in Space Research, 2018, 62, 662-682.	1.2	56
12	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
13	A double component in GRBÂ090618: a proto-black hole and a genuinely long gamma-ray burst. Astronomy and Astrophysics, 2012, 543, A10.	2.1	51
14	Sensitivity of HAWC to high-mass dark matter annihilations. Physical Review D, 2014, 90, .	1.6	38
15	Evidence for a proto-black hole and a double astrophysical component in GRBÂ101023. Astronomy and Astrophysics, 2012, 538, A58.	2.1	33
16	SEARCH FOR TeV GAMMA-RAY EMISSION FROM POINT-LIKE SOURCES IN THE INNER GALACTIC PLANE WITH A PARTIAL CONFIGURATION OF THE HAWC OBSERVATORY. Astrophysical Journal, 2016, 817, 3.	1.6	33
17	SEARCH FOR GAMMA-RAYS FROM THE UNUSUALLY BRIGHT GRB 130427A WITH THE HAWC GAMMA-RAY OBSERVATORY. Astrophysical Journal, 2015, 800, 78.	1.6	30
18	The Hunt for Environmental Noise in Virgo during the Third Observing Run. Galaxies, 2020, 8, 82.	1.1	29

BARBARA PATRICELLI

#	Article	IF	CITATIONS
19	Milagro limits and HAWC sensitivity for the rate-density of evaporating Primordial Black Holes. Astroparticle Physics, 2015, 64, 4-12.	1.9	24
20	Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 056-056.	1.9	23
21	GRB 071227: an additional case of a <i>disguised</i> short burst. Astronomy and Astrophysics, 2010, 521, A80.	2.1	22
22	ANALYSIS OF GRB 080319B AND GRB 050904 WITHIN THE FIRESHELL MODEL: EVIDENCE FOR A BROADER SPECTRAL ENERGY DISTRIBUTION. Astrophysical Journal, 2012, 756, 16.	1.6	22
23	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
24	Prospects for multimessenger detection of binary neutron star mergers in the fourth LIGO–Virgo–KAGRA observing run. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4159-4168.	1.6	20
25	THE STUDY OF TeV VARIABILITY AND THE DUTY CYCLE OF Mrk 421 FROM 3 Yr OF OBSERVATIONS WITH THE MILAGRO OBSERVATORY. Astrophysical Journal, 2014, 782, 110.	1.6	19
26	Data acquisition architecture and online processing system for the HAWC gamma-ray observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 888, 138-146.	0.7	16
27	On the nature of GRB 050509b: a disguised short GRB. Astronomy and Astrophysics, 2011, 529, A130.	2.1	15
28	Advanced Virgo: Status of the Detector, Latest Results and Future Prospects. Universe, 2021, 7, 322.	0.9	15
29	Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 056-056.	1.9	13
30	VAMOS: A pathfinder for the HAWC gamma-ray observatory. Astroparticle Physics, 2015, 62, 125-133.	1.9	11
31	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
32	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
33	GRB980923. A BURST WITH A SHORT DURATION HIGH-ENERGY COMPONENT. Astrophysical Journal, 2012, 755, 140.	1.6	7
34	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
35	The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s. , 2018, ,		6
36	The Blackholic energy and the canonical Gamma-Ray Burst IV: the "long,―"genuine short―and "fake—disguised short―GRBs. , 2009, , .		5

#	Article	IF	CITATIONS
37	A NEW SPECTRAL ENERGY DISTRIBUTION OF PHOTONS IN THE FIRESHELL MODEL OF GRBS. International Journal of Modern Physics D, 2011, 20, 1983-1987.	0.9	5
38	GRB 090423 at Redshift 8.1: a Theoretical Interpretation. Journal of the Korean Physical Society, 2010, 57, 551-556.	0.3	4
39	Can we constrain the aftermath of binary neutron star mergers with short gamma-ray bursts?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L96-L100.	1.2	3
40	Multimodal Analysis of Gravitational Wave Signals and Gamma-Ray Bursts from Binary Neutron Star Mergers. Universe, 2021, 7, 394.	0.9	3
41	GRB 080916C AND THE HIGH-ENERGY EMISSION IN THE FIRESHELL SCENARIO. International Journal of Modern Physics D, 2011, 20, 1949-1953.	0.9	2
42	EVIDENCES FOR A DOUBLE COMPONENT IN THE EMISSION OF GRB 101023. International Journal of Modern Physics Conference Series, 2013, 23, 254-259.	0.7	2
43	Estimation of the TeV gamma-ray duty cycle of Mrk 421 with the Milagro observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 208-211.	0.7	2
44	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
45	ON THE CHARGE TO MASS RATIO OF NEUTRON CORES AND HEAVY NUCLEI. AIP Conference Proceedings, 2008, , .	0.3	1
46	The Electrodynamics of the Core and the Crust components in Neutron Stars. AIP Conference Proceedings, 2008, , .	0.3	1
47	Scientific verification of High Altitude Water Cherenkov observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 216-219.	0.7	1
48	Hadronic flares and associated neutrinos for Markarian 421. Proceedings of the International Astronomical Union, 2014, 10, 177-178.	0.0	1
49	Three-peak GRBs and their implications for central engines. New Astronomy, 2015, 41, 53-58.	0.8	1
50	On the Crust of Neutron Stars: a progress report. , 2009, , .		0
51	Black Holes in Gamma Ray Bursts. , 2010, , .		Ο
52	On GRB 080916C and GRB 090902B observed by the Fermi satellite. , 2010, , .		0
53	Disguised Short Bursts and the Amati Relation. , 2010, , .		0
54	GRB 071227: ANOTHER <i>DISGUISED</i> SHORT BURST. International Journal of Modern Physics D, 2011, 20, 1931-1935.	0.9	0

#	Article	IF	CITATIONS
55	Studies on the high-energy follow-up of gravitational wave transient events. Journal of Physics: Conference Series, 2016, 718, 072005.	0.3	0
56	Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range. , 2021, , 1-45.		0
57	Electromagnetic Counterparts of Gravitational Waves in the Hz-kHz Range. , 2022, , 947-991.		0